| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brwdom3i |
⊢ ( 𝐴 ≼* 𝐵 → ∃ 𝑓 ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) → ∃ 𝑓 ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ) |
| 3 |
|
brwdom3i |
⊢ ( 𝐶 ≼* 𝐷 → ∃ 𝑔 ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) → ∃ 𝑔 ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) |
| 5 |
|
relwdom |
⊢ Rel ≼* |
| 6 |
5
|
brrelex1i |
⊢ ( 𝐴 ≼* 𝐵 → 𝐴 ∈ V ) |
| 7 |
5
|
brrelex1i |
⊢ ( 𝐶 ≼* 𝐷 → 𝐶 ∈ V ) |
| 8 |
|
xpexg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐴 × 𝐶 ) ∈ V ) |
| 9 |
6 7 8
|
syl2an |
⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) → ( 𝐴 × 𝐶 ) ∈ V ) |
| 10 |
9
|
adantr |
⊢ ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) ∧ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) → ( 𝐴 × 𝐶 ) ∈ V ) |
| 11 |
5
|
brrelex2i |
⊢ ( 𝐴 ≼* 𝐵 → 𝐵 ∈ V ) |
| 12 |
5
|
brrelex2i |
⊢ ( 𝐶 ≼* 𝐷 → 𝐷 ∈ V ) |
| 13 |
|
xpexg |
⊢ ( ( 𝐵 ∈ V ∧ 𝐷 ∈ V ) → ( 𝐵 × 𝐷 ) ∈ V ) |
| 14 |
11 12 13
|
syl2an |
⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) → ( 𝐵 × 𝐷 ) ∈ V ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) ∧ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) → ( 𝐵 × 𝐷 ) ∈ V ) |
| 16 |
|
pm3.2 |
⊢ ( ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) → ( ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) → ( ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) ) |
| 17 |
16
|
ralimdv |
⊢ ( ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) → ( ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) → ∀ 𝑐 ∈ 𝐶 ( ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) ) |
| 18 |
17
|
com12 |
⊢ ( ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) → ( ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) → ∀ 𝑐 ∈ 𝐶 ( ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) ) |
| 19 |
18
|
ralimdv |
⊢ ( ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) → ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) → ∀ 𝑎 ∈ 𝐴 ∀ 𝑐 ∈ 𝐶 ( ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) ) |
| 20 |
19
|
impcom |
⊢ ( ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) → ∀ 𝑎 ∈ 𝐴 ∀ 𝑐 ∈ 𝐶 ( ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) |
| 21 |
|
pm3.2 |
⊢ ( 𝑎 = ( 𝑓 ‘ 𝑏 ) → ( 𝑐 = ( 𝑔 ‘ 𝑑 ) → ( 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) ) |
| 22 |
21
|
reximdv |
⊢ ( 𝑎 = ( 𝑓 ‘ 𝑏 ) → ( ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) → ∃ 𝑑 ∈ 𝐷 ( 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) ) |
| 23 |
22
|
com12 |
⊢ ( ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) → ( 𝑎 = ( 𝑓 ‘ 𝑏 ) → ∃ 𝑑 ∈ 𝐷 ( 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) ) |
| 24 |
23
|
reximdv |
⊢ ( ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) → ( ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) → ∃ 𝑏 ∈ 𝐵 ∃ 𝑑 ∈ 𝐷 ( 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) ) |
| 25 |
24
|
impcom |
⊢ ( ( ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) → ∃ 𝑏 ∈ 𝐵 ∃ 𝑑 ∈ 𝐷 ( 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) |
| 26 |
25
|
2ralimi |
⊢ ( ∀ 𝑎 ∈ 𝐴 ∀ 𝑐 ∈ 𝐶 ( ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) → ∀ 𝑎 ∈ 𝐴 ∀ 𝑐 ∈ 𝐶 ∃ 𝑏 ∈ 𝐵 ∃ 𝑑 ∈ 𝐷 ( 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) |
| 27 |
20 26
|
syl |
⊢ ( ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) → ∀ 𝑎 ∈ 𝐴 ∀ 𝑐 ∈ 𝐶 ∃ 𝑏 ∈ 𝐵 ∃ 𝑑 ∈ 𝐷 ( 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) |
| 28 |
|
eqeq1 |
⊢ ( 𝑥 = 〈 𝑎 , 𝑐 〉 → ( 𝑥 = 〈 ( 𝑓 ‘ 𝑏 ) , ( 𝑔 ‘ 𝑑 ) 〉 ↔ 〈 𝑎 , 𝑐 〉 = 〈 ( 𝑓 ‘ 𝑏 ) , ( 𝑔 ‘ 𝑑 ) 〉 ) ) |
| 29 |
|
vex |
⊢ 𝑎 ∈ V |
| 30 |
|
vex |
⊢ 𝑐 ∈ V |
| 31 |
29 30
|
opth |
⊢ ( 〈 𝑎 , 𝑐 〉 = 〈 ( 𝑓 ‘ 𝑏 ) , ( 𝑔 ‘ 𝑑 ) 〉 ↔ ( 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) |
| 32 |
28 31
|
bitrdi |
⊢ ( 𝑥 = 〈 𝑎 , 𝑐 〉 → ( 𝑥 = 〈 ( 𝑓 ‘ 𝑏 ) , ( 𝑔 ‘ 𝑑 ) 〉 ↔ ( 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) ) |
| 33 |
32
|
2rexbidv |
⊢ ( 𝑥 = 〈 𝑎 , 𝑐 〉 → ( ∃ 𝑏 ∈ 𝐵 ∃ 𝑑 ∈ 𝐷 𝑥 = 〈 ( 𝑓 ‘ 𝑏 ) , ( 𝑔 ‘ 𝑑 ) 〉 ↔ ∃ 𝑏 ∈ 𝐵 ∃ 𝑑 ∈ 𝐷 ( 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) ) |
| 34 |
33
|
ralxp |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 × 𝐶 ) ∃ 𝑏 ∈ 𝐵 ∃ 𝑑 ∈ 𝐷 𝑥 = 〈 ( 𝑓 ‘ 𝑏 ) , ( 𝑔 ‘ 𝑑 ) 〉 ↔ ∀ 𝑎 ∈ 𝐴 ∀ 𝑐 ∈ 𝐶 ∃ 𝑏 ∈ 𝐵 ∃ 𝑑 ∈ 𝐷 ( 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) |
| 35 |
27 34
|
sylibr |
⊢ ( ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) → ∀ 𝑥 ∈ ( 𝐴 × 𝐶 ) ∃ 𝑏 ∈ 𝐵 ∃ 𝑑 ∈ 𝐷 𝑥 = 〈 ( 𝑓 ‘ 𝑏 ) , ( 𝑔 ‘ 𝑑 ) 〉 ) |
| 36 |
35
|
r19.21bi |
⊢ ( ( ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ∧ 𝑥 ∈ ( 𝐴 × 𝐶 ) ) → ∃ 𝑏 ∈ 𝐵 ∃ 𝑑 ∈ 𝐷 𝑥 = 〈 ( 𝑓 ‘ 𝑏 ) , ( 𝑔 ‘ 𝑑 ) 〉 ) |
| 37 |
|
vex |
⊢ 𝑏 ∈ V |
| 38 |
|
vex |
⊢ 𝑑 ∈ V |
| 39 |
37 38
|
op1std |
⊢ ( 𝑦 = 〈 𝑏 , 𝑑 〉 → ( 1st ‘ 𝑦 ) = 𝑏 ) |
| 40 |
39
|
fveq2d |
⊢ ( 𝑦 = 〈 𝑏 , 𝑑 〉 → ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) = ( 𝑓 ‘ 𝑏 ) ) |
| 41 |
37 38
|
op2ndd |
⊢ ( 𝑦 = 〈 𝑏 , 𝑑 〉 → ( 2nd ‘ 𝑦 ) = 𝑑 ) |
| 42 |
41
|
fveq2d |
⊢ ( 𝑦 = 〈 𝑏 , 𝑑 〉 → ( 𝑔 ‘ ( 2nd ‘ 𝑦 ) ) = ( 𝑔 ‘ 𝑑 ) ) |
| 43 |
40 42
|
opeq12d |
⊢ ( 𝑦 = 〈 𝑏 , 𝑑 〉 → 〈 ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) , ( 𝑔 ‘ ( 2nd ‘ 𝑦 ) ) 〉 = 〈 ( 𝑓 ‘ 𝑏 ) , ( 𝑔 ‘ 𝑑 ) 〉 ) |
| 44 |
43
|
eqeq2d |
⊢ ( 𝑦 = 〈 𝑏 , 𝑑 〉 → ( 𝑥 = 〈 ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) , ( 𝑔 ‘ ( 2nd ‘ 𝑦 ) ) 〉 ↔ 𝑥 = 〈 ( 𝑓 ‘ 𝑏 ) , ( 𝑔 ‘ 𝑑 ) 〉 ) ) |
| 45 |
44
|
rexxp |
⊢ ( ∃ 𝑦 ∈ ( 𝐵 × 𝐷 ) 𝑥 = 〈 ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) , ( 𝑔 ‘ ( 2nd ‘ 𝑦 ) ) 〉 ↔ ∃ 𝑏 ∈ 𝐵 ∃ 𝑑 ∈ 𝐷 𝑥 = 〈 ( 𝑓 ‘ 𝑏 ) , ( 𝑔 ‘ 𝑑 ) 〉 ) |
| 46 |
36 45
|
sylibr |
⊢ ( ( ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ∧ 𝑥 ∈ ( 𝐴 × 𝐶 ) ) → ∃ 𝑦 ∈ ( 𝐵 × 𝐷 ) 𝑥 = 〈 ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) , ( 𝑔 ‘ ( 2nd ‘ 𝑦 ) ) 〉 ) |
| 47 |
46
|
adantll |
⊢ ( ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) ∧ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) ∧ 𝑥 ∈ ( 𝐴 × 𝐶 ) ) → ∃ 𝑦 ∈ ( 𝐵 × 𝐷 ) 𝑥 = 〈 ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) , ( 𝑔 ‘ ( 2nd ‘ 𝑦 ) ) 〉 ) |
| 48 |
10 15 47
|
wdom2d |
⊢ ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) ∧ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) → ( 𝐴 × 𝐶 ) ≼* ( 𝐵 × 𝐷 ) ) |
| 49 |
48
|
expr |
⊢ ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ) → ( ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) → ( 𝐴 × 𝐶 ) ≼* ( 𝐵 × 𝐷 ) ) ) |
| 50 |
49
|
exlimdv |
⊢ ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ) → ( ∃ 𝑔 ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) → ( 𝐴 × 𝐶 ) ≼* ( 𝐵 × 𝐷 ) ) ) |
| 51 |
50
|
ex |
⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) → ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) → ( ∃ 𝑔 ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) → ( 𝐴 × 𝐶 ) ≼* ( 𝐵 × 𝐷 ) ) ) ) |
| 52 |
51
|
exlimdv |
⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) → ( ∃ 𝑓 ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) → ( ∃ 𝑔 ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) → ( 𝐴 × 𝐶 ) ≼* ( 𝐵 × 𝐷 ) ) ) ) |
| 53 |
2 4 52
|
mp2d |
⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) → ( 𝐴 × 𝐶 ) ≼* ( 𝐵 × 𝐷 ) ) |