Step |
Hyp |
Ref |
Expression |
1 |
|
rpge0 |
⊢ ( 𝑥 ∈ ℝ+ → 0 ≤ 𝑥 ) |
2 |
1
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 0 ≤ 𝑥 ) |
3 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) |
4 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
5 |
4
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ ) |
6 |
3 5
|
addge01d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( 0 ≤ 𝑥 ↔ 𝐵 ≤ ( 𝐵 + 𝑥 ) ) ) |
7 |
2 6
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝐵 ≤ ( 𝐵 + 𝑥 ) ) |
8 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝐴 ∈ ℝ* ) |
9 |
3
|
rexrd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝐵 ∈ ℝ* ) |
10 |
3 5
|
readdcld |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐵 + 𝑥 ) ∈ ℝ ) |
11 |
10
|
rexrd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐵 + 𝑥 ) ∈ ℝ* ) |
12 |
|
xrletr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐵 + 𝑥 ) ∈ ℝ* ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ ( 𝐵 + 𝑥 ) ) → 𝐴 ≤ ( 𝐵 + 𝑥 ) ) ) |
13 |
8 9 11 12
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ ( 𝐵 + 𝑥 ) ) → 𝐴 ≤ ( 𝐵 + 𝑥 ) ) ) |
14 |
7 13
|
mpan2d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐴 ≤ 𝐵 → 𝐴 ≤ ( 𝐵 + 𝑥 ) ) ) |
15 |
14
|
ralrimdva |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 → ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( 𝐵 + 𝑥 ) ) ) |
16 |
|
rexr |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) |
17 |
16
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ* ) |
18 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ* ) |
19 |
|
qbtwnxr |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 < 𝐴 ) → ∃ 𝑦 ∈ ℚ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) |
20 |
19
|
3expia |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐵 < 𝐴 → ∃ 𝑦 ∈ ℚ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) |
21 |
17 18 20
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < 𝐴 → ∃ 𝑦 ∈ ℚ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) |
22 |
|
simprrl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → 𝐵 < 𝑦 ) |
23 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → 𝐵 ∈ ℝ ) |
24 |
|
qre |
⊢ ( 𝑦 ∈ ℚ → 𝑦 ∈ ℝ ) |
25 |
24
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → 𝑦 ∈ ℝ ) |
26 |
|
difrp |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐵 < 𝑦 ↔ ( 𝑦 − 𝐵 ) ∈ ℝ+ ) ) |
27 |
23 25 26
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → ( 𝐵 < 𝑦 ↔ ( 𝑦 − 𝐵 ) ∈ ℝ+ ) ) |
28 |
22 27
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → ( 𝑦 − 𝐵 ) ∈ ℝ+ ) |
29 |
|
simprrr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → 𝑦 < 𝐴 ) |
30 |
25
|
rexrd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → 𝑦 ∈ ℝ* ) |
31 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → 𝐴 ∈ ℝ* ) |
32 |
|
xrltnle |
⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝑦 < 𝐴 ↔ ¬ 𝐴 ≤ 𝑦 ) ) |
33 |
30 31 32
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → ( 𝑦 < 𝐴 ↔ ¬ 𝐴 ≤ 𝑦 ) ) |
34 |
29 33
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → ¬ 𝐴 ≤ 𝑦 ) |
35 |
23
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → 𝐵 ∈ ℂ ) |
36 |
25
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → 𝑦 ∈ ℂ ) |
37 |
35 36
|
pncan3d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → ( 𝐵 + ( 𝑦 − 𝐵 ) ) = 𝑦 ) |
38 |
37
|
breq2d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → ( 𝐴 ≤ ( 𝐵 + ( 𝑦 − 𝐵 ) ) ↔ 𝐴 ≤ 𝑦 ) ) |
39 |
34 38
|
mtbird |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → ¬ 𝐴 ≤ ( 𝐵 + ( 𝑦 − 𝐵 ) ) ) |
40 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 − 𝐵 ) → ( 𝐵 + 𝑥 ) = ( 𝐵 + ( 𝑦 − 𝐵 ) ) ) |
41 |
40
|
breq2d |
⊢ ( 𝑥 = ( 𝑦 − 𝐵 ) → ( 𝐴 ≤ ( 𝐵 + 𝑥 ) ↔ 𝐴 ≤ ( 𝐵 + ( 𝑦 − 𝐵 ) ) ) ) |
42 |
41
|
notbid |
⊢ ( 𝑥 = ( 𝑦 − 𝐵 ) → ( ¬ 𝐴 ≤ ( 𝐵 + 𝑥 ) ↔ ¬ 𝐴 ≤ ( 𝐵 + ( 𝑦 − 𝐵 ) ) ) ) |
43 |
42
|
rspcev |
⊢ ( ( ( 𝑦 − 𝐵 ) ∈ ℝ+ ∧ ¬ 𝐴 ≤ ( 𝐵 + ( 𝑦 − 𝐵 ) ) ) → ∃ 𝑥 ∈ ℝ+ ¬ 𝐴 ≤ ( 𝐵 + 𝑥 ) ) |
44 |
28 39 43
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → ∃ 𝑥 ∈ ℝ+ ¬ 𝐴 ≤ ( 𝐵 + 𝑥 ) ) |
45 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ ℝ+ ¬ 𝐴 ≤ ( 𝐵 + 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( 𝐵 + 𝑥 ) ) |
46 |
44 45
|
sylib |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → ¬ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( 𝐵 + 𝑥 ) ) |
47 |
46
|
rexlimdvaa |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ∃ 𝑦 ∈ ℚ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) → ¬ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( 𝐵 + 𝑥 ) ) ) |
48 |
21 47
|
syld |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < 𝐴 → ¬ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( 𝐵 + 𝑥 ) ) ) |
49 |
48
|
con2d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( 𝐵 + 𝑥 ) → ¬ 𝐵 < 𝐴 ) ) |
50 |
|
xrlenlt |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |
51 |
16 50
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |
52 |
49 51
|
sylibrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( 𝐵 + 𝑥 ) → 𝐴 ≤ 𝐵 ) ) |
53 |
15 52
|
impbid |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( 𝐵 + 𝑥 ) ) ) |