Step |
Hyp |
Ref |
Expression |
1 |
|
xralrple2.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
xralrple2.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
3 |
|
xralrple2.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 0 [,) +∞ ) ) |
4 |
|
nfv |
⊢ Ⅎ 𝑥 𝐴 ≤ 𝐵 |
5 |
1 4
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) |
6 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑥 ∈ ℝ+ ) → 𝐴 ∈ ℝ* ) |
7 |
|
icossxr |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
8 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑥 ∈ ℝ+ ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
9 |
7 8
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑥 ∈ ℝ+ ) → 𝐵 ∈ ℝ* ) |
10 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 1 ∈ ℝ ) |
11 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ ) |
13 |
10 12
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 1 + 𝑥 ) ∈ ℝ ) |
14 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
15 |
14 3
|
sselid |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) |
17 |
13 16
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( 1 + 𝑥 ) · 𝐵 ) ∈ ℝ ) |
18 |
17
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( 1 + 𝑥 ) · 𝐵 ) ∈ ℝ* ) |
19 |
18
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 1 + 𝑥 ) · 𝐵 ) ∈ ℝ* ) |
20 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑥 ∈ ℝ+ ) → 𝐴 ≤ 𝐵 ) |
21 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑥 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) |
22 |
|
1red |
⊢ ( 𝑥 ∈ ℝ+ → 1 ∈ ℝ ) |
23 |
22 11
|
readdcld |
⊢ ( 𝑥 ∈ ℝ+ → ( 1 + 𝑥 ) ∈ ℝ ) |
24 |
23
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑥 ∈ ℝ+ ) → ( 1 + 𝑥 ) ∈ ℝ ) |
25 |
|
0xr |
⊢ 0 ∈ ℝ* |
26 |
25
|
a1i |
⊢ ( 𝐵 ∈ ( 0 [,) +∞ ) → 0 ∈ ℝ* ) |
27 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
28 |
27
|
a1i |
⊢ ( 𝐵 ∈ ( 0 [,) +∞ ) → +∞ ∈ ℝ* ) |
29 |
|
id |
⊢ ( 𝐵 ∈ ( 0 [,) +∞ ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
30 |
|
icogelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → 0 ≤ 𝐵 ) |
31 |
26 28 29 30
|
syl3anc |
⊢ ( 𝐵 ∈ ( 0 [,) +∞ ) → 0 ≤ 𝐵 ) |
32 |
3 31
|
syl |
⊢ ( 𝜑 → 0 ≤ 𝐵 ) |
33 |
32
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑥 ∈ ℝ+ ) → 0 ≤ 𝐵 ) |
34 |
|
id |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ+ ) |
35 |
22 34
|
ltaddrpd |
⊢ ( 𝑥 ∈ ℝ+ → 1 < ( 1 + 𝑥 ) ) |
36 |
22 23 35
|
ltled |
⊢ ( 𝑥 ∈ ℝ+ → 1 ≤ ( 1 + 𝑥 ) ) |
37 |
36
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑥 ∈ ℝ+ ) → 1 ≤ ( 1 + 𝑥 ) ) |
38 |
21 24 33 37
|
lemulge12d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑥 ∈ ℝ+ ) → 𝐵 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) |
39 |
6 9 19 20 38
|
xrletrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑥 ∈ ℝ+ ) → 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) |
40 |
39
|
ex |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( 𝑥 ∈ ℝ+ → 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) ) |
41 |
5 40
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) |
42 |
41
|
ex |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 → ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) ) |
43 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝐵 = 0 ) → 𝐴 ∈ ℝ* ) |
44 |
|
id |
⊢ ( 𝐵 = 0 → 𝐵 = 0 ) |
45 |
|
0red |
⊢ ( 𝐵 = 0 → 0 ∈ ℝ ) |
46 |
44 45
|
eqeltrd |
⊢ ( 𝐵 = 0 → 𝐵 ∈ ℝ ) |
47 |
46
|
adantl |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝐵 = 0 ) → 𝐵 ∈ ℝ ) |
48 |
|
rpre |
⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ ) |
49 |
48
|
adantr |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝐵 = 0 ) → 𝑦 ∈ ℝ ) |
50 |
47 49
|
readdcld |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝐵 = 0 ) → ( 𝐵 + 𝑦 ) ∈ ℝ ) |
51 |
50
|
rexrd |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝐵 = 0 ) → ( 𝐵 + 𝑦 ) ∈ ℝ* ) |
52 |
51
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝐵 = 0 ) → ( 𝐵 + 𝑦 ) ∈ ℝ* ) |
53 |
25
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝐵 = 0 ) → 0 ∈ ℝ* ) |
54 |
|
1rp |
⊢ 1 ∈ ℝ+ |
55 |
54
|
a1i |
⊢ ( ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) → 1 ∈ ℝ+ ) |
56 |
|
id |
⊢ ( ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) → ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) |
57 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 1 + 𝑥 ) = ( 1 + 1 ) ) |
58 |
57
|
oveq1d |
⊢ ( 𝑥 = 1 → ( ( 1 + 𝑥 ) · 𝐵 ) = ( ( 1 + 1 ) · 𝐵 ) ) |
59 |
58
|
breq2d |
⊢ ( 𝑥 = 1 → ( 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ↔ 𝐴 ≤ ( ( 1 + 1 ) · 𝐵 ) ) ) |
60 |
59
|
rspcva |
⊢ ( ( 1 ∈ ℝ+ ∧ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) → 𝐴 ≤ ( ( 1 + 1 ) · 𝐵 ) ) |
61 |
55 56 60
|
syl2anc |
⊢ ( ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) → 𝐴 ≤ ( ( 1 + 1 ) · 𝐵 ) ) |
62 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
63 |
62
|
a1i |
⊢ ( ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) → ( 1 + 1 ) = 2 ) |
64 |
63
|
oveq1d |
⊢ ( ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) → ( ( 1 + 1 ) · 𝐵 ) = ( 2 · 𝐵 ) ) |
65 |
61 64
|
breqtrd |
⊢ ( ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) → 𝐴 ≤ ( 2 · 𝐵 ) ) |
66 |
65
|
adantr |
⊢ ( ( ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ∧ 𝐵 = 0 ) → 𝐴 ≤ ( 2 · 𝐵 ) ) |
67 |
|
simpr |
⊢ ( ( ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ∧ 𝐵 = 0 ) → 𝐵 = 0 ) |
68 |
|
simpl |
⊢ ( ( 𝐴 ≤ ( 2 · 𝐵 ) ∧ 𝐵 = 0 ) → 𝐴 ≤ ( 2 · 𝐵 ) ) |
69 |
|
oveq2 |
⊢ ( 𝐵 = 0 → ( 2 · 𝐵 ) = ( 2 · 0 ) ) |
70 |
|
2cnd |
⊢ ( 𝐵 = 0 → 2 ∈ ℂ ) |
71 |
70
|
mul01d |
⊢ ( 𝐵 = 0 → ( 2 · 0 ) = 0 ) |
72 |
69 71
|
eqtrd |
⊢ ( 𝐵 = 0 → ( 2 · 𝐵 ) = 0 ) |
73 |
72
|
adantl |
⊢ ( ( 𝐴 ≤ ( 2 · 𝐵 ) ∧ 𝐵 = 0 ) → ( 2 · 𝐵 ) = 0 ) |
74 |
68 73
|
breqtrd |
⊢ ( ( 𝐴 ≤ ( 2 · 𝐵 ) ∧ 𝐵 = 0 ) → 𝐴 ≤ 0 ) |
75 |
66 67 74
|
syl2anc |
⊢ ( ( ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ∧ 𝐵 = 0 ) → 𝐴 ≤ 0 ) |
76 |
75
|
ad4ant24 |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝐵 = 0 ) → 𝐴 ≤ 0 ) |
77 |
|
rpgt0 |
⊢ ( 𝑦 ∈ ℝ+ → 0 < 𝑦 ) |
78 |
77
|
adantr |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝐵 = 0 ) → 0 < 𝑦 ) |
79 |
|
oveq1 |
⊢ ( 𝐵 = 0 → ( 𝐵 + 𝑦 ) = ( 0 + 𝑦 ) ) |
80 |
79
|
adantl |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝐵 = 0 ) → ( 𝐵 + 𝑦 ) = ( 0 + 𝑦 ) ) |
81 |
48
|
recnd |
⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℂ ) |
82 |
81
|
adantr |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝐵 = 0 ) → 𝑦 ∈ ℂ ) |
83 |
82
|
addid2d |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝐵 = 0 ) → ( 0 + 𝑦 ) = 𝑦 ) |
84 |
80 83
|
eqtr2d |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝐵 = 0 ) → 𝑦 = ( 𝐵 + 𝑦 ) ) |
85 |
78 84
|
breqtrd |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝐵 = 0 ) → 0 < ( 𝐵 + 𝑦 ) ) |
86 |
85
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝐵 = 0 ) → 0 < ( 𝐵 + 𝑦 ) ) |
87 |
43 53 52 76 86
|
xrlelttrd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝐵 = 0 ) → 𝐴 < ( 𝐵 + 𝑦 ) ) |
88 |
43 52 87
|
xrltled |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝐵 = 0 ) → 𝐴 ≤ ( 𝐵 + 𝑦 ) ) |
89 |
|
simpl |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ¬ 𝐵 = 0 ) → ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) ∧ 𝑦 ∈ ℝ+ ) ) |
90 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 = 0 ) → 𝐵 ∈ ℝ ) |
91 |
|
0red |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 = 0 ) → 0 ∈ ℝ ) |
92 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 = 0 ) → 0 ≤ 𝐵 ) |
93 |
44
|
necon3bi |
⊢ ( ¬ 𝐵 = 0 → 𝐵 ≠ 0 ) |
94 |
93
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 = 0 ) → 𝐵 ≠ 0 ) |
95 |
91 90 92 94
|
leneltd |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 = 0 ) → 0 < 𝐵 ) |
96 |
90 95
|
elrpd |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 = 0 ) → 𝐵 ∈ ℝ+ ) |
97 |
96
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ¬ 𝐵 = 0 ) → 𝐵 ∈ ℝ+ ) |
98 |
|
simplr |
⊢ ( ( ( ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝐵 ∈ ℝ+ ) → 𝑦 ∈ ℝ+ ) |
99 |
|
simpr |
⊢ ( ( ( ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℝ+ ) |
100 |
98 99
|
rpdivcld |
⊢ ( ( ( ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝐵 ∈ ℝ+ ) → ( 𝑦 / 𝐵 ) ∈ ℝ+ ) |
101 |
|
simpll |
⊢ ( ( ( ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝐵 ∈ ℝ+ ) → ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) |
102 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 / 𝐵 ) → ( 1 + 𝑥 ) = ( 1 + ( 𝑦 / 𝐵 ) ) ) |
103 |
102
|
oveq1d |
⊢ ( 𝑥 = ( 𝑦 / 𝐵 ) → ( ( 1 + 𝑥 ) · 𝐵 ) = ( ( 1 + ( 𝑦 / 𝐵 ) ) · 𝐵 ) ) |
104 |
103
|
breq2d |
⊢ ( 𝑥 = ( 𝑦 / 𝐵 ) → ( 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ↔ 𝐴 ≤ ( ( 1 + ( 𝑦 / 𝐵 ) ) · 𝐵 ) ) ) |
105 |
104
|
rspcva |
⊢ ( ( ( 𝑦 / 𝐵 ) ∈ ℝ+ ∧ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) → 𝐴 ≤ ( ( 1 + ( 𝑦 / 𝐵 ) ) · 𝐵 ) ) |
106 |
100 101 105
|
syl2anc |
⊢ ( ( ( ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝐵 ∈ ℝ+ ) → 𝐴 ≤ ( ( 1 + ( 𝑦 / 𝐵 ) ) · 𝐵 ) ) |
107 |
106
|
adantlll |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝐵 ∈ ℝ+ ) → 𝐴 ≤ ( ( 1 + ( 𝑦 / 𝐵 ) ) · 𝐵 ) ) |
108 |
|
1cnd |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → 1 ∈ ℂ ) |
109 |
81
|
adantr |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → 𝑦 ∈ ℂ ) |
110 |
|
rpcn |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ ) |
111 |
110
|
adantl |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℂ ) |
112 |
|
rpne0 |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ≠ 0 ) |
113 |
112
|
adantl |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ≠ 0 ) |
114 |
109 111 113
|
divcld |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 𝑦 / 𝐵 ) ∈ ℂ ) |
115 |
108 114 111
|
adddird |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( ( 1 + ( 𝑦 / 𝐵 ) ) · 𝐵 ) = ( ( 1 · 𝐵 ) + ( ( 𝑦 / 𝐵 ) · 𝐵 ) ) ) |
116 |
111
|
mulid2d |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 1 · 𝐵 ) = 𝐵 ) |
117 |
109 111 113
|
divcan1d |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝑦 / 𝐵 ) · 𝐵 ) = 𝑦 ) |
118 |
116 117
|
oveq12d |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( ( 1 · 𝐵 ) + ( ( 𝑦 / 𝐵 ) · 𝐵 ) ) = ( 𝐵 + 𝑦 ) ) |
119 |
|
eqidd |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐵 + 𝑦 ) = ( 𝐵 + 𝑦 ) ) |
120 |
115 118 119
|
3eqtrd |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( ( 1 + ( 𝑦 / 𝐵 ) ) · 𝐵 ) = ( 𝐵 + 𝑦 ) ) |
121 |
120
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝐵 ∈ ℝ+ ) → ( ( 1 + ( 𝑦 / 𝐵 ) ) · 𝐵 ) = ( 𝐵 + 𝑦 ) ) |
122 |
107 121
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝐵 ∈ ℝ+ ) → 𝐴 ≤ ( 𝐵 + 𝑦 ) ) |
123 |
89 97 122
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ¬ 𝐵 = 0 ) → 𝐴 ≤ ( 𝐵 + 𝑦 ) ) |
124 |
88 123
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) ∧ 𝑦 ∈ ℝ+ ) → 𝐴 ≤ ( 𝐵 + 𝑦 ) ) |
125 |
124
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) → ∀ 𝑦 ∈ ℝ+ 𝐴 ≤ ( 𝐵 + 𝑦 ) ) |
126 |
|
xralrple |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ∀ 𝑦 ∈ ℝ+ 𝐴 ≤ ( 𝐵 + 𝑦 ) ) ) |
127 |
2 15 126
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 ↔ ∀ 𝑦 ∈ ℝ+ 𝐴 ≤ ( 𝐵 + 𝑦 ) ) ) |
128 |
127
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) → ( 𝐴 ≤ 𝐵 ↔ ∀ 𝑦 ∈ ℝ+ 𝐴 ≤ ( 𝐵 + 𝑦 ) ) ) |
129 |
125 128
|
mpbird |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) → 𝐴 ≤ 𝐵 ) |
130 |
129
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) → 𝐴 ≤ 𝐵 ) ) |
131 |
42 130
|
impbid |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 ↔ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( ( 1 + 𝑥 ) · 𝐵 ) ) ) |