| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							xralrple4.a | 
							⊢ ( 𝜑  →  𝐴  ∈  ℝ* )  | 
						
						
							| 2 | 
							
								
							 | 
							xralrple4.b | 
							⊢ ( 𝜑  →  𝐵  ∈  ℝ )  | 
						
						
							| 3 | 
							
								
							 | 
							xralrple4.n | 
							⊢ ( 𝜑  →  𝑁  ∈  ℕ )  | 
						
						
							| 4 | 
							
								1
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑥  ∈  ℝ+ )  →  𝐴  ∈  ℝ* )  | 
						
						
							| 5 | 
							
								2
							 | 
							rexrd | 
							⊢ ( 𝜑  →  𝐵  ∈  ℝ* )  | 
						
						
							| 6 | 
							
								5
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑥  ∈  ℝ+ )  →  𝐵  ∈  ℝ* )  | 
						
						
							| 7 | 
							
								2
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑥  ∈  ℝ+ )  →  𝐵  ∈  ℝ )  | 
						
						
							| 8 | 
							
								
							 | 
							rpre | 
							⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℝ )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℝ )  | 
						
						
							| 10 | 
							
								3
							 | 
							nnnn0d | 
							⊢ ( 𝜑  →  𝑁  ∈  ℕ0 )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑁  ∈  ℕ0 )  | 
						
						
							| 12 | 
							
								9 11
							 | 
							reexpcld | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 𝑥 ↑ 𝑁 )  ∈  ℝ )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑥  ∈  ℝ+ )  →  ( 𝑥 ↑ 𝑁 )  ∈  ℝ )  | 
						
						
							| 14 | 
							
								7 13
							 | 
							readdcld | 
							⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑥  ∈  ℝ+ )  →  ( 𝐵  +  ( 𝑥 ↑ 𝑁 ) )  ∈  ℝ )  | 
						
						
							| 15 | 
							
								14
							 | 
							rexrd | 
							⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑥  ∈  ℝ+ )  →  ( 𝐵  +  ( 𝑥 ↑ 𝑁 ) )  ∈  ℝ* )  | 
						
						
							| 16 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑥  ∈  ℝ+ )  →  𝐴  ≤  𝐵 )  | 
						
						
							| 17 | 
							
								
							 | 
							rpge0 | 
							⊢ ( 𝑥  ∈  ℝ+  →  0  ≤  𝑥 )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  0  ≤  𝑥 )  | 
						
						
							| 19 | 
							
								9 11 18
							 | 
							expge0d | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  0  ≤  ( 𝑥 ↑ 𝑁 ) )  | 
						
						
							| 20 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝐵  ∈  ℝ )  | 
						
						
							| 21 | 
							
								20 12
							 | 
							addge01d | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 0  ≤  ( 𝑥 ↑ 𝑁 )  ↔  𝐵  ≤  ( 𝐵  +  ( 𝑥 ↑ 𝑁 ) ) ) )  | 
						
						
							| 22 | 
							
								19 21
							 | 
							mpbid | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝐵  ≤  ( 𝐵  +  ( 𝑥 ↑ 𝑁 ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑥  ∈  ℝ+ )  →  𝐵  ≤  ( 𝐵  +  ( 𝑥 ↑ 𝑁 ) ) )  | 
						
						
							| 24 | 
							
								4 6 15 16 23
							 | 
							xrletrd | 
							⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑥  ∈  ℝ+ )  →  𝐴  ≤  ( 𝐵  +  ( 𝑥 ↑ 𝑁 ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							ralrimiva | 
							⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ∀ 𝑥  ∈  ℝ+ 𝐴  ≤  ( 𝐵  +  ( 𝑥 ↑ 𝑁 ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							ex | 
							⊢ ( 𝜑  →  ( 𝐴  ≤  𝐵  →  ∀ 𝑥  ∈  ℝ+ 𝐴  ≤  ( 𝐵  +  ( 𝑥 ↑ 𝑁 ) ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  →  𝑦  ∈  ℝ+ )  | 
						
						
							| 28 | 
							
								3
							 | 
							nnrpd | 
							⊢ ( 𝜑  →  𝑁  ∈  ℝ+ )  | 
						
						
							| 29 | 
							
								28
							 | 
							rpreccld | 
							⊢ ( 𝜑  →  ( 1  /  𝑁 )  ∈  ℝ+ )  | 
						
						
							| 30 | 
							
								29
							 | 
							rpred | 
							⊢ ( 𝜑  →  ( 1  /  𝑁 )  ∈  ℝ )  | 
						
						
							| 31 | 
							
								30
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  →  ( 1  /  𝑁 )  ∈  ℝ )  | 
						
						
							| 32 | 
							
								27 31
							 | 
							rpcxpcld | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  →  ( 𝑦 ↑𝑐 ( 1  /  𝑁 ) )  ∈  ℝ+ )  | 
						
						
							| 33 | 
							
								32
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ+ 𝐴  ≤  ( 𝐵  +  ( 𝑥 ↑ 𝑁 ) ) )  ∧  𝑦  ∈  ℝ+ )  →  ( 𝑦 ↑𝑐 ( 1  /  𝑁 ) )  ∈  ℝ+ )  | 
						
						
							| 34 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ+ 𝐴  ≤  ( 𝐵  +  ( 𝑥 ↑ 𝑁 ) ) )  ∧  𝑦  ∈  ℝ+ )  →  ∀ 𝑥  ∈  ℝ+ 𝐴  ≤  ( 𝐵  +  ( 𝑥 ↑ 𝑁 ) ) )  | 
						
						
							| 35 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑥  =  ( 𝑦 ↑𝑐 ( 1  /  𝑁 ) )  →  ( 𝑥 ↑ 𝑁 )  =  ( ( 𝑦 ↑𝑐 ( 1  /  𝑁 ) ) ↑ 𝑁 ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							oveq2d | 
							⊢ ( 𝑥  =  ( 𝑦 ↑𝑐 ( 1  /  𝑁 ) )  →  ( 𝐵  +  ( 𝑥 ↑ 𝑁 ) )  =  ( 𝐵  +  ( ( 𝑦 ↑𝑐 ( 1  /  𝑁 ) ) ↑ 𝑁 ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							breq2d | 
							⊢ ( 𝑥  =  ( 𝑦 ↑𝑐 ( 1  /  𝑁 ) )  →  ( 𝐴  ≤  ( 𝐵  +  ( 𝑥 ↑ 𝑁 ) )  ↔  𝐴  ≤  ( 𝐵  +  ( ( 𝑦 ↑𝑐 ( 1  /  𝑁 ) ) ↑ 𝑁 ) ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							rspcva | 
							⊢ ( ( ( 𝑦 ↑𝑐 ( 1  /  𝑁 ) )  ∈  ℝ+  ∧  ∀ 𝑥  ∈  ℝ+ 𝐴  ≤  ( 𝐵  +  ( 𝑥 ↑ 𝑁 ) ) )  →  𝐴  ≤  ( 𝐵  +  ( ( 𝑦 ↑𝑐 ( 1  /  𝑁 ) ) ↑ 𝑁 ) ) )  | 
						
						
							| 39 | 
							
								33 34 38
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ+ 𝐴  ≤  ( 𝐵  +  ( 𝑥 ↑ 𝑁 ) ) )  ∧  𝑦  ∈  ℝ+ )  →  𝐴  ≤  ( 𝐵  +  ( ( 𝑦 ↑𝑐 ( 1  /  𝑁 ) ) ↑ 𝑁 ) ) )  | 
						
						
							| 40 | 
							
								27
							 | 
							rpcnd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  →  𝑦  ∈  ℂ )  | 
						
						
							| 41 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  →  𝑁  ∈  ℕ )  | 
						
						
							| 42 | 
							
								
							 | 
							cxproot | 
							⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑦 ↑𝑐 ( 1  /  𝑁 ) ) ↑ 𝑁 )  =  𝑦 )  | 
						
						
							| 43 | 
							
								40 41 42
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  →  ( ( 𝑦 ↑𝑐 ( 1  /  𝑁 ) ) ↑ 𝑁 )  =  𝑦 )  | 
						
						
							| 44 | 
							
								43
							 | 
							oveq2d | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  →  ( 𝐵  +  ( ( 𝑦 ↑𝑐 ( 1  /  𝑁 ) ) ↑ 𝑁 ) )  =  ( 𝐵  +  𝑦 ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ+ 𝐴  ≤  ( 𝐵  +  ( 𝑥 ↑ 𝑁 ) ) )  ∧  𝑦  ∈  ℝ+ )  →  ( 𝐵  +  ( ( 𝑦 ↑𝑐 ( 1  /  𝑁 ) ) ↑ 𝑁 ) )  =  ( 𝐵  +  𝑦 ) )  | 
						
						
							| 46 | 
							
								39 45
							 | 
							breqtrd | 
							⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ+ 𝐴  ≤  ( 𝐵  +  ( 𝑥 ↑ 𝑁 ) ) )  ∧  𝑦  ∈  ℝ+ )  →  𝐴  ≤  ( 𝐵  +  𝑦 ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							ralrimiva | 
							⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ+ 𝐴  ≤  ( 𝐵  +  ( 𝑥 ↑ 𝑁 ) ) )  →  ∀ 𝑦  ∈  ℝ+ 𝐴  ≤  ( 𝐵  +  𝑦 ) )  | 
						
						
							| 48 | 
							
								
							 | 
							xralrple | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  ≤  𝐵  ↔  ∀ 𝑦  ∈  ℝ+ 𝐴  ≤  ( 𝐵  +  𝑦 ) ) )  | 
						
						
							| 49 | 
							
								1 2 48
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝐴  ≤  𝐵  ↔  ∀ 𝑦  ∈  ℝ+ 𝐴  ≤  ( 𝐵  +  𝑦 ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ+ 𝐴  ≤  ( 𝐵  +  ( 𝑥 ↑ 𝑁 ) ) )  →  ( 𝐴  ≤  𝐵  ↔  ∀ 𝑦  ∈  ℝ+ 𝐴  ≤  ( 𝐵  +  𝑦 ) ) )  | 
						
						
							| 51 | 
							
								47 50
							 | 
							mpbird | 
							⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ+ 𝐴  ≤  ( 𝐵  +  ( 𝑥 ↑ 𝑁 ) ) )  →  𝐴  ≤  𝐵 )  | 
						
						
							| 52 | 
							
								51
							 | 
							ex | 
							⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ+ 𝐴  ≤  ( 𝐵  +  ( 𝑥 ↑ 𝑁 ) )  →  𝐴  ≤  𝐵 ) )  | 
						
						
							| 53 | 
							
								26 52
							 | 
							impbid | 
							⊢ ( 𝜑  →  ( 𝐴  ≤  𝐵  ↔  ∀ 𝑥  ∈  ℝ+ 𝐴  ≤  ( 𝐵  +  ( 𝑥 ↑ 𝑁 ) ) ) )  |