Step |
Hyp |
Ref |
Expression |
1 |
|
xrdifh.1 |
⊢ 𝐴 ∈ ℝ* |
2 |
|
biortn |
⊢ ( 𝑥 ∈ ℝ* → ( ( ¬ 𝐴 ≤ 𝑥 ∨ ¬ 𝑥 ≤ +∞ ) ↔ ( ¬ 𝑥 ∈ ℝ* ∨ ( ¬ 𝐴 ≤ 𝑥 ∨ ¬ 𝑥 ≤ +∞ ) ) ) ) |
3 |
|
pnfge |
⊢ ( 𝑥 ∈ ℝ* → 𝑥 ≤ +∞ ) |
4 |
3
|
notnotd |
⊢ ( 𝑥 ∈ ℝ* → ¬ ¬ 𝑥 ≤ +∞ ) |
5 |
|
biorf |
⊢ ( ¬ ¬ 𝑥 ≤ +∞ → ( ¬ 𝐴 ≤ 𝑥 ↔ ( ¬ 𝑥 ≤ +∞ ∨ ¬ 𝐴 ≤ 𝑥 ) ) ) |
6 |
4 5
|
syl |
⊢ ( 𝑥 ∈ ℝ* → ( ¬ 𝐴 ≤ 𝑥 ↔ ( ¬ 𝑥 ≤ +∞ ∨ ¬ 𝐴 ≤ 𝑥 ) ) ) |
7 |
|
orcom |
⊢ ( ( ¬ 𝐴 ≤ 𝑥 ∨ ¬ 𝑥 ≤ +∞ ) ↔ ( ¬ 𝑥 ≤ +∞ ∨ ¬ 𝐴 ≤ 𝑥 ) ) |
8 |
6 7
|
bitr4di |
⊢ ( 𝑥 ∈ ℝ* → ( ¬ 𝐴 ≤ 𝑥 ↔ ( ¬ 𝐴 ≤ 𝑥 ∨ ¬ 𝑥 ≤ +∞ ) ) ) |
9 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
10 |
|
elicc1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 [,] +∞ ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ +∞ ) ) ) |
11 |
1 9 10
|
mp2an |
⊢ ( 𝑥 ∈ ( 𝐴 [,] +∞ ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ +∞ ) ) |
12 |
11
|
notbii |
⊢ ( ¬ 𝑥 ∈ ( 𝐴 [,] +∞ ) ↔ ¬ ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ +∞ ) ) |
13 |
|
3ianor |
⊢ ( ¬ ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ +∞ ) ↔ ( ¬ 𝑥 ∈ ℝ* ∨ ¬ 𝐴 ≤ 𝑥 ∨ ¬ 𝑥 ≤ +∞ ) ) |
14 |
|
3orass |
⊢ ( ( ¬ 𝑥 ∈ ℝ* ∨ ¬ 𝐴 ≤ 𝑥 ∨ ¬ 𝑥 ≤ +∞ ) ↔ ( ¬ 𝑥 ∈ ℝ* ∨ ( ¬ 𝐴 ≤ 𝑥 ∨ ¬ 𝑥 ≤ +∞ ) ) ) |
15 |
12 13 14
|
3bitri |
⊢ ( ¬ 𝑥 ∈ ( 𝐴 [,] +∞ ) ↔ ( ¬ 𝑥 ∈ ℝ* ∨ ( ¬ 𝐴 ≤ 𝑥 ∨ ¬ 𝑥 ≤ +∞ ) ) ) |
16 |
15
|
a1i |
⊢ ( 𝑥 ∈ ℝ* → ( ¬ 𝑥 ∈ ( 𝐴 [,] +∞ ) ↔ ( ¬ 𝑥 ∈ ℝ* ∨ ( ¬ 𝐴 ≤ 𝑥 ∨ ¬ 𝑥 ≤ +∞ ) ) ) ) |
17 |
2 8 16
|
3bitr4rd |
⊢ ( 𝑥 ∈ ℝ* → ( ¬ 𝑥 ∈ ( 𝐴 [,] +∞ ) ↔ ¬ 𝐴 ≤ 𝑥 ) ) |
18 |
|
xrltnle |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝑥 < 𝐴 ↔ ¬ 𝐴 ≤ 𝑥 ) ) |
19 |
1 18
|
mpan2 |
⊢ ( 𝑥 ∈ ℝ* → ( 𝑥 < 𝐴 ↔ ¬ 𝐴 ≤ 𝑥 ) ) |
20 |
17 19
|
bitr4d |
⊢ ( 𝑥 ∈ ℝ* → ( ¬ 𝑥 ∈ ( 𝐴 [,] +∞ ) ↔ 𝑥 < 𝐴 ) ) |
21 |
20
|
pm5.32i |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ¬ 𝑥 ∈ ( 𝐴 [,] +∞ ) ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝑥 < 𝐴 ) ) |
22 |
|
eldif |
⊢ ( 𝑥 ∈ ( ℝ* ∖ ( 𝐴 [,] +∞ ) ) ↔ ( 𝑥 ∈ ℝ* ∧ ¬ 𝑥 ∈ ( 𝐴 [,] +∞ ) ) ) |
23 |
|
3anass |
⊢ ( ( 𝑥 ∈ ℝ* ∧ -∞ ≤ 𝑥 ∧ 𝑥 < 𝐴 ) ↔ ( 𝑥 ∈ ℝ* ∧ ( -∞ ≤ 𝑥 ∧ 𝑥 < 𝐴 ) ) ) |
24 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
25 |
|
elico1 |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝑥 ∈ ( -∞ [,) 𝐴 ) ↔ ( 𝑥 ∈ ℝ* ∧ -∞ ≤ 𝑥 ∧ 𝑥 < 𝐴 ) ) ) |
26 |
24 1 25
|
mp2an |
⊢ ( 𝑥 ∈ ( -∞ [,) 𝐴 ) ↔ ( 𝑥 ∈ ℝ* ∧ -∞ ≤ 𝑥 ∧ 𝑥 < 𝐴 ) ) |
27 |
|
mnfle |
⊢ ( 𝑥 ∈ ℝ* → -∞ ≤ 𝑥 ) |
28 |
27
|
biantrurd |
⊢ ( 𝑥 ∈ ℝ* → ( 𝑥 < 𝐴 ↔ ( -∞ ≤ 𝑥 ∧ 𝑥 < 𝐴 ) ) ) |
29 |
28
|
pm5.32i |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑥 < 𝐴 ) ↔ ( 𝑥 ∈ ℝ* ∧ ( -∞ ≤ 𝑥 ∧ 𝑥 < 𝐴 ) ) ) |
30 |
23 26 29
|
3bitr4i |
⊢ ( 𝑥 ∈ ( -∞ [,) 𝐴 ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝑥 < 𝐴 ) ) |
31 |
21 22 30
|
3bitr4i |
⊢ ( 𝑥 ∈ ( ℝ* ∖ ( 𝐴 [,] +∞ ) ) ↔ 𝑥 ∈ ( -∞ [,) 𝐴 ) ) |
32 |
31
|
eqriv |
⊢ ( ℝ* ∖ ( 𝐴 [,] +∞ ) ) = ( -∞ [,) 𝐴 ) |