Metamath Proof Explorer


Theorem xrdifh

Description: Class difference of a half-open interval in the extended reals. (Contributed by Thierry Arnoux, 1-Aug-2017)

Ref Expression
Hypothesis xrdifh.1 𝐴 ∈ ℝ*
Assertion xrdifh ( ℝ* ∖ ( 𝐴 [,] +∞ ) ) = ( -∞ [,) 𝐴 )

Proof

Step Hyp Ref Expression
1 xrdifh.1 𝐴 ∈ ℝ*
2 biortn ( 𝑥 ∈ ℝ* → ( ( ¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞ ) ↔ ( ¬ 𝑥 ∈ ℝ* ∨ ( ¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞ ) ) ) )
3 pnfge ( 𝑥 ∈ ℝ*𝑥 ≤ +∞ )
4 3 notnotd ( 𝑥 ∈ ℝ* → ¬ ¬ 𝑥 ≤ +∞ )
5 biorf ( ¬ ¬ 𝑥 ≤ +∞ → ( ¬ 𝐴𝑥 ↔ ( ¬ 𝑥 ≤ +∞ ∨ ¬ 𝐴𝑥 ) ) )
6 4 5 syl ( 𝑥 ∈ ℝ* → ( ¬ 𝐴𝑥 ↔ ( ¬ 𝑥 ≤ +∞ ∨ ¬ 𝐴𝑥 ) ) )
7 orcom ( ( ¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞ ) ↔ ( ¬ 𝑥 ≤ +∞ ∨ ¬ 𝐴𝑥 ) )
8 6 7 bitr4di ( 𝑥 ∈ ℝ* → ( ¬ 𝐴𝑥 ↔ ( ¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞ ) ) )
9 pnfxr +∞ ∈ ℝ*
10 elicc1 ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 [,] +∞ ) ↔ ( 𝑥 ∈ ℝ*𝐴𝑥𝑥 ≤ +∞ ) ) )
11 1 9 10 mp2an ( 𝑥 ∈ ( 𝐴 [,] +∞ ) ↔ ( 𝑥 ∈ ℝ*𝐴𝑥𝑥 ≤ +∞ ) )
12 11 notbii ( ¬ 𝑥 ∈ ( 𝐴 [,] +∞ ) ↔ ¬ ( 𝑥 ∈ ℝ*𝐴𝑥𝑥 ≤ +∞ ) )
13 3ianor ( ¬ ( 𝑥 ∈ ℝ*𝐴𝑥𝑥 ≤ +∞ ) ↔ ( ¬ 𝑥 ∈ ℝ* ∨ ¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞ ) )
14 3orass ( ( ¬ 𝑥 ∈ ℝ* ∨ ¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞ ) ↔ ( ¬ 𝑥 ∈ ℝ* ∨ ( ¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞ ) ) )
15 12 13 14 3bitri ( ¬ 𝑥 ∈ ( 𝐴 [,] +∞ ) ↔ ( ¬ 𝑥 ∈ ℝ* ∨ ( ¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞ ) ) )
16 15 a1i ( 𝑥 ∈ ℝ* → ( ¬ 𝑥 ∈ ( 𝐴 [,] +∞ ) ↔ ( ¬ 𝑥 ∈ ℝ* ∨ ( ¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞ ) ) ) )
17 2 8 16 3bitr4rd ( 𝑥 ∈ ℝ* → ( ¬ 𝑥 ∈ ( 𝐴 [,] +∞ ) ↔ ¬ 𝐴𝑥 ) )
18 xrltnle ( ( 𝑥 ∈ ℝ*𝐴 ∈ ℝ* ) → ( 𝑥 < 𝐴 ↔ ¬ 𝐴𝑥 ) )
19 1 18 mpan2 ( 𝑥 ∈ ℝ* → ( 𝑥 < 𝐴 ↔ ¬ 𝐴𝑥 ) )
20 17 19 bitr4d ( 𝑥 ∈ ℝ* → ( ¬ 𝑥 ∈ ( 𝐴 [,] +∞ ) ↔ 𝑥 < 𝐴 ) )
21 20 pm5.32i ( ( 𝑥 ∈ ℝ* ∧ ¬ 𝑥 ∈ ( 𝐴 [,] +∞ ) ) ↔ ( 𝑥 ∈ ℝ*𝑥 < 𝐴 ) )
22 eldif ( 𝑥 ∈ ( ℝ* ∖ ( 𝐴 [,] +∞ ) ) ↔ ( 𝑥 ∈ ℝ* ∧ ¬ 𝑥 ∈ ( 𝐴 [,] +∞ ) ) )
23 3anass ( ( 𝑥 ∈ ℝ* ∧ -∞ ≤ 𝑥𝑥 < 𝐴 ) ↔ ( 𝑥 ∈ ℝ* ∧ ( -∞ ≤ 𝑥𝑥 < 𝐴 ) ) )
24 mnfxr -∞ ∈ ℝ*
25 elico1 ( ( -∞ ∈ ℝ*𝐴 ∈ ℝ* ) → ( 𝑥 ∈ ( -∞ [,) 𝐴 ) ↔ ( 𝑥 ∈ ℝ* ∧ -∞ ≤ 𝑥𝑥 < 𝐴 ) ) )
26 24 1 25 mp2an ( 𝑥 ∈ ( -∞ [,) 𝐴 ) ↔ ( 𝑥 ∈ ℝ* ∧ -∞ ≤ 𝑥𝑥 < 𝐴 ) )
27 mnfle ( 𝑥 ∈ ℝ* → -∞ ≤ 𝑥 )
28 27 biantrurd ( 𝑥 ∈ ℝ* → ( 𝑥 < 𝐴 ↔ ( -∞ ≤ 𝑥𝑥 < 𝐴 ) ) )
29 28 pm5.32i ( ( 𝑥 ∈ ℝ*𝑥 < 𝐴 ) ↔ ( 𝑥 ∈ ℝ* ∧ ( -∞ ≤ 𝑥𝑥 < 𝐴 ) ) )
30 23 26 29 3bitr4i ( 𝑥 ∈ ( -∞ [,) 𝐴 ) ↔ ( 𝑥 ∈ ℝ*𝑥 < 𝐴 ) )
31 21 22 30 3bitr4i ( 𝑥 ∈ ( ℝ* ∖ ( 𝐴 [,] +∞ ) ) ↔ 𝑥 ∈ ( -∞ [,) 𝐴 ) )
32 31 eqriv ( ℝ* ∖ ( 𝐴 [,] +∞ ) ) = ( -∞ [,) 𝐴 )