Step |
Hyp |
Ref |
Expression |
1 |
|
ax-rrecex |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ∃ 𝑥 ∈ ℝ ( 𝐴 · 𝑥 ) = 1 ) |
2 |
|
rexmul |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐴 ·e 𝑥 ) = ( 𝐴 · 𝑥 ) ) |
3 |
2
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝐴 ·e 𝑥 ) = 1 ↔ ( 𝐴 · 𝑥 ) = 1 ) ) |
4 |
3
|
ex |
⊢ ( 𝐴 ∈ ℝ → ( 𝑥 ∈ ℝ → ( ( 𝐴 ·e 𝑥 ) = 1 ↔ ( 𝐴 · 𝑥 ) = 1 ) ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 𝑥 ∈ ℝ → ( ( 𝐴 ·e 𝑥 ) = 1 ↔ ( 𝐴 · 𝑥 ) = 1 ) ) ) |
6 |
5
|
pm5.32d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ( 𝑥 ∈ ℝ ∧ ( 𝐴 ·e 𝑥 ) = 1 ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐴 · 𝑥 ) = 1 ) ) ) |
7 |
6
|
rexbidv2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ∃ 𝑥 ∈ ℝ ( 𝐴 ·e 𝑥 ) = 1 ↔ ∃ 𝑥 ∈ ℝ ( 𝐴 · 𝑥 ) = 1 ) ) |
8 |
1 7
|
mpbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ∃ 𝑥 ∈ ℝ ( 𝐴 ·e 𝑥 ) = 1 ) |