Metamath Proof Explorer


Theorem xrecex

Description: Existence of reciprocal of nonzero real number. (Contributed by Thierry Arnoux, 17-Dec-2016)

Ref Expression
Assertion xrecex ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ∃ 𝑥 ∈ ℝ ( 𝐴 ·e 𝑥 ) = 1 )

Proof

Step Hyp Ref Expression
1 ax-rrecex ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ∃ 𝑥 ∈ ℝ ( 𝐴 · 𝑥 ) = 1 )
2 rexmul ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐴 ·e 𝑥 ) = ( 𝐴 · 𝑥 ) )
3 2 eqeq1d ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝐴 ·e 𝑥 ) = 1 ↔ ( 𝐴 · 𝑥 ) = 1 ) )
4 3 ex ( 𝐴 ∈ ℝ → ( 𝑥 ∈ ℝ → ( ( 𝐴 ·e 𝑥 ) = 1 ↔ ( 𝐴 · 𝑥 ) = 1 ) ) )
5 4 adantr ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 𝑥 ∈ ℝ → ( ( 𝐴 ·e 𝑥 ) = 1 ↔ ( 𝐴 · 𝑥 ) = 1 ) ) )
6 5 pm5.32d ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ( 𝑥 ∈ ℝ ∧ ( 𝐴 ·e 𝑥 ) = 1 ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐴 · 𝑥 ) = 1 ) ) )
7 6 rexbidv2 ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ∃ 𝑥 ∈ ℝ ( 𝐴 ·e 𝑥 ) = 1 ↔ ∃ 𝑥 ∈ ℝ ( 𝐴 · 𝑥 ) = 1 ) )
8 1 7 mpbird ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ∃ 𝑥 ∈ ℝ ( 𝐴 ·e 𝑥 ) = 1 )