Metamath Proof Explorer


Theorem xreqle

Description: Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion xreqle ( ( 𝐴 ∈ ℝ*𝐴 = 𝐵 ) → 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 xrleid ( 𝐴 ∈ ℝ*𝐴𝐴 )
2 1 adantr ( ( 𝐴 ∈ ℝ*𝐴 = 𝐵 ) → 𝐴𝐴 )
3 simpr ( ( 𝐴 ∈ ℝ*𝐴 = 𝐵 ) → 𝐴 = 𝐵 )
4 breq2 ( 𝐴 = 𝐵 → ( 𝐴𝐴𝐴𝐵 ) )
5 4 biimpac ( ( 𝐴𝐴𝐴 = 𝐵 ) → 𝐴𝐵 )
6 2 3 5 syl2anc ( ( 𝐴 ∈ ℝ*𝐴 = 𝐵 ) → 𝐴𝐵 )