Metamath Proof Explorer


Theorem xreqnltd

Description: A consequence of trichotomy. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses xreqnltd.1 ( 𝜑𝐴 ∈ ℝ* )
xreqnltd.2 ( 𝜑𝐴 = 𝐵 )
Assertion xreqnltd ( 𝜑 → ¬ 𝐴 < 𝐵 )

Proof

Step Hyp Ref Expression
1 xreqnltd.1 ( 𝜑𝐴 ∈ ℝ* )
2 xreqnltd.2 ( 𝜑𝐴 = 𝐵 )
3 2 1 eqeltrrd ( 𝜑𝐵 ∈ ℝ* )
4 xrlttri3 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 = 𝐵 ↔ ( ¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴 ) ) )
5 1 3 4 syl2anc ( 𝜑 → ( 𝐴 = 𝐵 ↔ ( ¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴 ) ) )
6 2 5 mpbid ( 𝜑 → ( ¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴 ) )
7 6 simpld ( 𝜑 → ¬ 𝐴 < 𝐵 )