Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) = ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) |
2 |
1
|
xrs1mnd |
⊢ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ∈ Mnd |
3 |
|
xrge0cmn |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd |
4 |
|
cmnmnd |
⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ) |
5 |
3 4
|
ax-mp |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd |
6 |
|
mnflt0 |
⊢ -∞ < 0 |
7 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
8 |
|
0xr |
⊢ 0 ∈ ℝ* |
9 |
|
xrltnle |
⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( -∞ < 0 ↔ ¬ 0 ≤ -∞ ) ) |
10 |
7 8 9
|
mp2an |
⊢ ( -∞ < 0 ↔ ¬ 0 ≤ -∞ ) |
11 |
6 10
|
mpbi |
⊢ ¬ 0 ≤ -∞ |
12 |
11
|
intnan |
⊢ ¬ ( -∞ ∈ ℝ* ∧ 0 ≤ -∞ ) |
13 |
|
elxrge0 |
⊢ ( -∞ ∈ ( 0 [,] +∞ ) ↔ ( -∞ ∈ ℝ* ∧ 0 ≤ -∞ ) ) |
14 |
12 13
|
mtbir |
⊢ ¬ -∞ ∈ ( 0 [,] +∞ ) |
15 |
|
difsn |
⊢ ( ¬ -∞ ∈ ( 0 [,] +∞ ) → ( ( 0 [,] +∞ ) ∖ { -∞ } ) = ( 0 [,] +∞ ) ) |
16 |
14 15
|
ax-mp |
⊢ ( ( 0 [,] +∞ ) ∖ { -∞ } ) = ( 0 [,] +∞ ) |
17 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
18 |
|
ssdif |
⊢ ( ( 0 [,] +∞ ) ⊆ ℝ* → ( ( 0 [,] +∞ ) ∖ { -∞ } ) ⊆ ( ℝ* ∖ { -∞ } ) ) |
19 |
17 18
|
ax-mp |
⊢ ( ( 0 [,] +∞ ) ∖ { -∞ } ) ⊆ ( ℝ* ∖ { -∞ } ) |
20 |
16 19
|
eqsstrri |
⊢ ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) |
21 |
|
0e0iccpnf |
⊢ 0 ∈ ( 0 [,] +∞ ) |
22 |
|
difss |
⊢ ( ℝ* ∖ { -∞ } ) ⊆ ℝ* |
23 |
|
df-ss |
⊢ ( ( ℝ* ∖ { -∞ } ) ⊆ ℝ* ↔ ( ( ℝ* ∖ { -∞ } ) ∩ ℝ* ) = ( ℝ* ∖ { -∞ } ) ) |
24 |
22 23
|
mpbi |
⊢ ( ( ℝ* ∖ { -∞ } ) ∩ ℝ* ) = ( ℝ* ∖ { -∞ } ) |
25 |
|
xrex |
⊢ ℝ* ∈ V |
26 |
|
difexg |
⊢ ( ℝ* ∈ V → ( ℝ* ∖ { -∞ } ) ∈ V ) |
27 |
25 26
|
ax-mp |
⊢ ( ℝ* ∖ { -∞ } ) ∈ V |
28 |
|
xrsbas |
⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) |
29 |
1 28
|
ressbas |
⊢ ( ( ℝ* ∖ { -∞ } ) ∈ V → ( ( ℝ* ∖ { -∞ } ) ∩ ℝ* ) = ( Base ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) ) |
30 |
27 29
|
ax-mp |
⊢ ( ( ℝ* ∖ { -∞ } ) ∩ ℝ* ) = ( Base ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) |
31 |
24 30
|
eqtr3i |
⊢ ( ℝ* ∖ { -∞ } ) = ( Base ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) |
32 |
1
|
xrs10 |
⊢ 0 = ( 0g ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) |
33 |
|
ovex |
⊢ ( 0 [,] +∞ ) ∈ V |
34 |
|
ressress |
⊢ ( ( ( ℝ* ∖ { -∞ } ) ∈ V ∧ ( 0 [,] +∞ ) ∈ V ) → ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠 ↾s ( ( ℝ* ∖ { -∞ } ) ∩ ( 0 [,] +∞ ) ) ) ) |
35 |
27 33 34
|
mp2an |
⊢ ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠 ↾s ( ( ℝ* ∖ { -∞ } ) ∩ ( 0 [,] +∞ ) ) ) |
36 |
|
dfss |
⊢ ( ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) ↔ ( 0 [,] +∞ ) = ( ( 0 [,] +∞ ) ∩ ( ℝ* ∖ { -∞ } ) ) ) |
37 |
20 36
|
mpbi |
⊢ ( 0 [,] +∞ ) = ( ( 0 [,] +∞ ) ∩ ( ℝ* ∖ { -∞ } ) ) |
38 |
|
incom |
⊢ ( ( 0 [,] +∞ ) ∩ ( ℝ* ∖ { -∞ } ) ) = ( ( ℝ* ∖ { -∞ } ) ∩ ( 0 [,] +∞ ) ) |
39 |
37 38
|
eqtr2i |
⊢ ( ( ℝ* ∖ { -∞ } ) ∩ ( 0 [,] +∞ ) ) = ( 0 [,] +∞ ) |
40 |
39
|
oveq2i |
⊢ ( ℝ*𝑠 ↾s ( ( ℝ* ∖ { -∞ } ) ∩ ( 0 [,] +∞ ) ) ) = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) |
41 |
35 40
|
eqtr2i |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) = ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ↾s ( 0 [,] +∞ ) ) |
42 |
31 32 41
|
submnd0 |
⊢ ( ( ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ∈ Mnd ∧ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ) ∧ ( ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) ∧ 0 ∈ ( 0 [,] +∞ ) ) ) → 0 = ( 0g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) ) |
43 |
2 5 20 21 42
|
mp4an |
⊢ 0 = ( 0g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |