Step |
Hyp |
Ref |
Expression |
1 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
2 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
3 |
1 2
|
sselid |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 𝐴 ∈ ℝ* ) |
4 |
|
0xr |
⊢ 0 ∈ ℝ* |
5 |
4
|
a1i |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 0 ∈ ℝ* ) |
6 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
7 |
6
|
a1i |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → +∞ ∈ ℝ* ) |
8 |
|
elicc4 |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞ ) ) ) |
9 |
5 7 3 8
|
syl3anc |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞ ) ) ) |
10 |
2 9
|
mpbid |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞ ) ) |
11 |
10
|
simpld |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 0 ≤ 𝐴 ) |
12 |
|
ge0nemnf |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) → 𝐴 ≠ -∞ ) |
13 |
3 11 12
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 𝐴 ≠ -∞ ) |
14 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
15 |
1 14
|
sselid |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 𝐵 ∈ ℝ* ) |
16 |
|
elicc4 |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐵 ∈ ( 0 [,] +∞ ) ↔ ( 0 ≤ 𝐵 ∧ 𝐵 ≤ +∞ ) ) ) |
17 |
5 7 15 16
|
syl3anc |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( 𝐵 ∈ ( 0 [,] +∞ ) ↔ ( 0 ≤ 𝐵 ∧ 𝐵 ≤ +∞ ) ) ) |
18 |
14 17
|
mpbid |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( 0 ≤ 𝐵 ∧ 𝐵 ≤ +∞ ) ) |
19 |
18
|
simpld |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 0 ≤ 𝐵 ) |
20 |
|
ge0nemnf |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) → 𝐵 ≠ -∞ ) |
21 |
15 19 20
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 𝐵 ≠ -∞ ) |
22 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
23 |
1 22
|
sselid |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 𝐶 ∈ ℝ* ) |
24 |
|
elicc4 |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐶 ∈ ( 0 [,] +∞ ) ↔ ( 0 ≤ 𝐶 ∧ 𝐶 ≤ +∞ ) ) ) |
25 |
5 7 23 24
|
syl3anc |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( 𝐶 ∈ ( 0 [,] +∞ ) ↔ ( 0 ≤ 𝐶 ∧ 𝐶 ≤ +∞ ) ) ) |
26 |
22 25
|
mpbid |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( 0 ≤ 𝐶 ∧ 𝐶 ≤ +∞ ) ) |
27 |
26
|
simpld |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 0 ≤ 𝐶 ) |
28 |
|
ge0nemnf |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶 ) → 𝐶 ≠ -∞ ) |
29 |
23 27 28
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 𝐶 ≠ -∞ ) |
30 |
|
xaddass |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) ∧ ( 𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞ ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞ ) ) → ( ( 𝐴 +𝑒 𝐵 ) +𝑒 𝐶 ) = ( 𝐴 +𝑒 ( 𝐵 +𝑒 𝐶 ) ) ) |
31 |
3 13 15 21 23 29 30
|
syl222anc |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( ( 𝐴 +𝑒 𝐵 ) +𝑒 𝐶 ) = ( 𝐴 +𝑒 ( 𝐵 +𝑒 𝐶 ) ) ) |