Metamath Proof Explorer


Theorem xrge0addge

Description: A number is less than or equal to itself plus a nonnegative number. (Contributed by Thierry Arnoux, 19-Jul-2020)

Ref Expression
Assertion xrge0addge ( ( 𝐴 ∈ ℝ*𝐵 ∈ ( 0 [,] +∞ ) ) → 𝐴 ≤ ( 𝐴 +𝑒 𝐵 ) )

Proof

Step Hyp Ref Expression
1 elxrge0 ( 𝐵 ∈ ( 0 [,] +∞ ) ↔ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) )
2 1 biimpi ( 𝐵 ∈ ( 0 [,] +∞ ) → ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) )
3 xraddge02 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 0 ≤ 𝐵𝐴 ≤ ( 𝐴 +𝑒 𝐵 ) ) )
4 3 impr ( ( 𝐴 ∈ ℝ* ∧ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ) → 𝐴 ≤ ( 𝐴 +𝑒 𝐵 ) )
5 2 4 sylan2 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ( 0 [,] +∞ ) ) → 𝐴 ≤ ( 𝐴 +𝑒 𝐵 ) )