Step |
Hyp |
Ref |
Expression |
1 |
|
0xr |
⊢ 0 ∈ ℝ* |
2 |
|
xaddid1 |
⊢ ( 0 ∈ ℝ* → ( 0 +𝑒 0 ) = 0 ) |
3 |
1 2
|
ax-mp |
⊢ ( 0 +𝑒 0 ) = 0 |
4 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) ∧ 0 < 𝐵 ) → 0 < 𝐴 ) |
5 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) ∧ 0 < 𝐵 ) → 0 < 𝐵 ) |
6 |
1
|
a1i |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) ∧ 0 < 𝐵 ) → 0 ∈ ℝ* ) |
7 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
8 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) ∧ 0 < 𝐵 ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
9 |
7 8
|
sselid |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) ∧ 0 < 𝐵 ) → 𝐴 ∈ ℝ* ) |
10 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) ∧ 0 < 𝐵 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
11 |
7 10
|
sselid |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) ∧ 0 < 𝐵 ) → 𝐵 ∈ ℝ* ) |
12 |
|
xlt2add |
⊢ ( ( ( 0 ∈ ℝ* ∧ 0 ∈ ℝ* ) ∧ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) → ( ( 0 < 𝐴 ∧ 0 < 𝐵 ) → ( 0 +𝑒 0 ) < ( 𝐴 +𝑒 𝐵 ) ) ) |
13 |
6 6 9 11 12
|
syl22anc |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) ∧ 0 < 𝐵 ) → ( ( 0 < 𝐴 ∧ 0 < 𝐵 ) → ( 0 +𝑒 0 ) < ( 𝐴 +𝑒 𝐵 ) ) ) |
14 |
4 5 13
|
mp2and |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) ∧ 0 < 𝐵 ) → ( 0 +𝑒 0 ) < ( 𝐴 +𝑒 𝐵 ) ) |
15 |
3 14
|
eqbrtrrid |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) ∧ 0 < 𝐵 ) → 0 < ( 𝐴 +𝑒 𝐵 ) ) |
16 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) ∧ 0 = 𝐵 ) → 0 < 𝐴 ) |
17 |
|
oveq2 |
⊢ ( 0 = 𝐵 → ( 𝐴 +𝑒 0 ) = ( 𝐴 +𝑒 𝐵 ) ) |
18 |
17
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) ∧ 0 = 𝐵 ) → ( 𝐴 +𝑒 0 ) = ( 𝐴 +𝑒 𝐵 ) ) |
19 |
18
|
breq2d |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) ∧ 0 = 𝐵 ) → ( 0 < ( 𝐴 +𝑒 0 ) ↔ 0 < ( 𝐴 +𝑒 𝐵 ) ) ) |
20 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) ∧ 0 = 𝐵 ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
21 |
7 20
|
sselid |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) ∧ 0 = 𝐵 ) → 𝐴 ∈ ℝ* ) |
22 |
|
xaddid1 |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 +𝑒 0 ) = 𝐴 ) |
23 |
21 22
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) ∧ 0 = 𝐵 ) → ( 𝐴 +𝑒 0 ) = 𝐴 ) |
24 |
23
|
breq2d |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) ∧ 0 = 𝐵 ) → ( 0 < ( 𝐴 +𝑒 0 ) ↔ 0 < 𝐴 ) ) |
25 |
19 24
|
bitr3d |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) ∧ 0 = 𝐵 ) → ( 0 < ( 𝐴 +𝑒 𝐵 ) ↔ 0 < 𝐴 ) ) |
26 |
16 25
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) ∧ 0 = 𝐵 ) → 0 < ( 𝐴 +𝑒 𝐵 ) ) |
27 |
1
|
a1i |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) → 0 ∈ ℝ* ) |
28 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
29 |
7 28
|
sselid |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) → 𝐵 ∈ ℝ* ) |
30 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
31 |
30
|
a1i |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) → +∞ ∈ ℝ* ) |
32 |
|
iccgelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → 0 ≤ 𝐵 ) |
33 |
27 31 28 32
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) → 0 ≤ 𝐵 ) |
34 |
|
xrleloe |
⊢ ( ( 0 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 0 ≤ 𝐵 ↔ ( 0 < 𝐵 ∨ 0 = 𝐵 ) ) ) |
35 |
34
|
biimpa |
⊢ ( ( ( 0 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 0 ≤ 𝐵 ) → ( 0 < 𝐵 ∨ 0 = 𝐵 ) ) |
36 |
27 29 33 35
|
syl21anc |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) → ( 0 < 𝐵 ∨ 0 = 𝐵 ) ) |
37 |
15 26 36
|
mpjaodan |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) → 0 < ( 𝐴 +𝑒 𝐵 ) ) |