Step |
Hyp |
Ref |
Expression |
1 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
2 |
|
df-ss |
⊢ ( ( 0 [,] +∞ ) ⊆ ℝ* ↔ ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( 0 [,] +∞ ) ) |
3 |
1 2
|
mpbi |
⊢ ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( 0 [,] +∞ ) |
4 |
|
ovex |
⊢ ( 0 [,] +∞ ) ∈ V |
5 |
|
eqid |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) |
6 |
|
xrsbas |
⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) |
7 |
5 6
|
ressbas |
⊢ ( ( 0 [,] +∞ ) ∈ V → ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) ) |
8 |
4 7
|
ax-mp |
⊢ ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
9 |
3 8
|
eqtr3i |
⊢ ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |