Metamath Proof Explorer


Theorem xrge0base

Description: The base of the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 30-Jan-2017)

Ref Expression
Assertion xrge0base ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )

Proof

Step Hyp Ref Expression
1 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
2 df-ss ( ( 0 [,] +∞ ) ⊆ ℝ* ↔ ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( 0 [,] +∞ ) )
3 1 2 mpbi ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( 0 [,] +∞ )
4 ovex ( 0 [,] +∞ ) ∈ V
5 eqid ( ℝ*𝑠s ( 0 [,] +∞ ) ) = ( ℝ*𝑠s ( 0 [,] +∞ ) )
6 xrsbas * = ( Base ‘ ℝ*𝑠 )
7 5 6 ressbas ( ( 0 [,] +∞ ) ∈ V → ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( Base ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) ) )
8 4 7 ax-mp ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( Base ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
9 3 8 eqtr3i ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )