| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( ℝ*𝑠  ↾s  ( ℝ*  ∖  { -∞ } ) )  =  ( ℝ*𝑠  ↾s  ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 2 | 1 | xrs1cmn | ⊢ ( ℝ*𝑠  ↾s  ( ℝ*  ∖  { -∞ } ) )  ∈  CMnd | 
						
							| 3 | 1 | xrge0subm | ⊢ ( 0 [,] +∞ )  ∈  ( SubMnd ‘ ( ℝ*𝑠  ↾s  ( ℝ*  ∖  { -∞ } ) ) ) | 
						
							| 4 |  | xrex | ⊢ ℝ*  ∈  V | 
						
							| 5 | 4 | difexi | ⊢ ( ℝ*  ∖  { -∞ } )  ∈  V | 
						
							| 6 |  | difss | ⊢ ( ℝ*  ∖  { -∞ } )  ⊆  ℝ* | 
						
							| 7 |  | xrsbas | ⊢ ℝ*  =  ( Base ‘ ℝ*𝑠 ) | 
						
							| 8 | 1 7 | ressbas2 | ⊢ ( ( ℝ*  ∖  { -∞ } )  ⊆  ℝ*  →  ( ℝ*  ∖  { -∞ } )  =  ( Base ‘ ( ℝ*𝑠  ↾s  ( ℝ*  ∖  { -∞ } ) ) ) ) | 
						
							| 9 | 6 8 | ax-mp | ⊢ ( ℝ*  ∖  { -∞ } )  =  ( Base ‘ ( ℝ*𝑠  ↾s  ( ℝ*  ∖  { -∞ } ) ) ) | 
						
							| 10 | 9 | submss | ⊢ ( ( 0 [,] +∞ )  ∈  ( SubMnd ‘ ( ℝ*𝑠  ↾s  ( ℝ*  ∖  { -∞ } ) ) )  →  ( 0 [,] +∞ )  ⊆  ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 11 | 3 10 | ax-mp | ⊢ ( 0 [,] +∞ )  ⊆  ( ℝ*  ∖  { -∞ } ) | 
						
							| 12 |  | ressabs | ⊢ ( ( ( ℝ*  ∖  { -∞ } )  ∈  V  ∧  ( 0 [,] +∞ )  ⊆  ( ℝ*  ∖  { -∞ } ) )  →  ( ( ℝ*𝑠  ↾s  ( ℝ*  ∖  { -∞ } ) )  ↾s  ( 0 [,] +∞ ) )  =  ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) ) | 
						
							| 13 | 5 11 12 | mp2an | ⊢ ( ( ℝ*𝑠  ↾s  ( ℝ*  ∖  { -∞ } ) )  ↾s  ( 0 [,] +∞ ) )  =  ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) | 
						
							| 14 | 13 | eqcomi | ⊢ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) )  =  ( ( ℝ*𝑠  ↾s  ( ℝ*  ∖  { -∞ } ) )  ↾s  ( 0 [,] +∞ ) ) | 
						
							| 15 | 14 | submmnd | ⊢ ( ( 0 [,] +∞ )  ∈  ( SubMnd ‘ ( ℝ*𝑠  ↾s  ( ℝ*  ∖  { -∞ } ) ) )  →  ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) )  ∈  Mnd ) | 
						
							| 16 | 3 15 | ax-mp | ⊢ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) )  ∈  Mnd | 
						
							| 17 | 14 | subcmn | ⊢ ( ( ( ℝ*𝑠  ↾s  ( ℝ*  ∖  { -∞ } ) )  ∈  CMnd  ∧  ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) )  ∈  Mnd )  →  ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) )  ∈  CMnd ) | 
						
							| 18 | 2 16 17 | mp2an | ⊢ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) )  ∈  CMnd |