Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) = ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) |
2 |
1
|
xrs1cmn |
⊢ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ∈ CMnd |
3 |
1
|
xrge0subm |
⊢ ( 0 [,] +∞ ) ∈ ( SubMnd ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) |
4 |
|
xrex |
⊢ ℝ* ∈ V |
5 |
4
|
difexi |
⊢ ( ℝ* ∖ { -∞ } ) ∈ V |
6 |
|
difss |
⊢ ( ℝ* ∖ { -∞ } ) ⊆ ℝ* |
7 |
|
xrsbas |
⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) |
8 |
1 7
|
ressbas2 |
⊢ ( ( ℝ* ∖ { -∞ } ) ⊆ ℝ* → ( ℝ* ∖ { -∞ } ) = ( Base ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) ) |
9 |
6 8
|
ax-mp |
⊢ ( ℝ* ∖ { -∞ } ) = ( Base ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) |
10 |
9
|
submss |
⊢ ( ( 0 [,] +∞ ) ∈ ( SubMnd ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) → ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) ) |
11 |
3 10
|
ax-mp |
⊢ ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) |
12 |
|
ressabs |
⊢ ( ( ( ℝ* ∖ { -∞ } ) ∈ V ∧ ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) ) → ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
13 |
5 11 12
|
mp2an |
⊢ ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) |
14 |
13
|
eqcomi |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) = ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ↾s ( 0 [,] +∞ ) ) |
15 |
14
|
submmnd |
⊢ ( ( 0 [,] +∞ ) ∈ ( SubMnd ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ) |
16 |
3 15
|
ax-mp |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd |
17 |
14
|
subcmn |
⊢ ( ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ∈ CMnd ∧ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ) → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd ) |
18 |
2 16 17
|
mp2an |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd |