Step |
Hyp |
Ref |
Expression |
1 |
|
ffn |
⊢ ( 𝐹 : ℝ ⟶ ℝ → 𝐹 Fn ℝ ) |
2 |
1
|
adantr |
⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 0𝑝 ∘r ≤ 𝐹 ) → 𝐹 Fn ℝ ) |
3 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
4 |
3
|
a1i |
⊢ ( 𝐹 : ℝ ⟶ ℝ → ℝ ⊆ ℂ ) |
5 |
4 1
|
0pledm |
⊢ ( 𝐹 : ℝ ⟶ ℝ → ( 0𝑝 ∘r ≤ 𝐹 ↔ ( ℝ × { 0 } ) ∘r ≤ 𝐹 ) ) |
6 |
|
0re |
⊢ 0 ∈ ℝ |
7 |
|
fnconstg |
⊢ ( 0 ∈ ℝ → ( ℝ × { 0 } ) Fn ℝ ) |
8 |
6 7
|
mp1i |
⊢ ( 𝐹 : ℝ ⟶ ℝ → ( ℝ × { 0 } ) Fn ℝ ) |
9 |
|
reex |
⊢ ℝ ∈ V |
10 |
9
|
a1i |
⊢ ( 𝐹 : ℝ ⟶ ℝ → ℝ ∈ V ) |
11 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
12 |
|
c0ex |
⊢ 0 ∈ V |
13 |
12
|
fvconst2 |
⊢ ( 𝑥 ∈ ℝ → ( ( ℝ × { 0 } ) ‘ 𝑥 ) = 0 ) |
14 |
13
|
adantl |
⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ℝ × { 0 } ) ‘ 𝑥 ) = 0 ) |
15 |
|
eqidd |
⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
16 |
8 1 10 10 11 14 15
|
ofrfval |
⊢ ( 𝐹 : ℝ ⟶ ℝ → ( ( ℝ × { 0 } ) ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ ℝ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
17 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
18 |
17
|
rexrd |
⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
19 |
18
|
biantrurd |
⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
20 |
|
elxrge0 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
21 |
19 20
|
bitr4di |
⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) ) |
22 |
21
|
ralbidva |
⊢ ( 𝐹 : ℝ ⟶ ℝ → ( ∀ 𝑥 ∈ ℝ 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) ) |
23 |
5 16 22
|
3bitrd |
⊢ ( 𝐹 : ℝ ⟶ ℝ → ( 0𝑝 ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ ℝ ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) ) |
24 |
23
|
biimpa |
⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 0𝑝 ∘r ≤ 𝐹 ) → ∀ 𝑥 ∈ ℝ ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
25 |
|
ffnfv |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ↔ ( 𝐹 Fn ℝ ∧ ∀ 𝑥 ∈ ℝ ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) ) |
26 |
2 24 25
|
sylanbrc |
⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 0𝑝 ∘r ≤ 𝐹 ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |