| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ffn | ⊢ ( 𝐹 : ℝ ⟶ ℝ  →  𝐹  Fn  ℝ ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ  ∧  0𝑝  ∘r   ≤  𝐹 )  →  𝐹  Fn  ℝ ) | 
						
							| 3 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 4 | 3 | a1i | ⊢ ( 𝐹 : ℝ ⟶ ℝ  →  ℝ  ⊆  ℂ ) | 
						
							| 5 | 4 1 | 0pledm | ⊢ ( 𝐹 : ℝ ⟶ ℝ  →  ( 0𝑝  ∘r   ≤  𝐹  ↔  ( ℝ  ×  { 0 } )  ∘r   ≤  𝐹 ) ) | 
						
							| 6 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 7 |  | fnconstg | ⊢ ( 0  ∈  ℝ  →  ( ℝ  ×  { 0 } )  Fn  ℝ ) | 
						
							| 8 | 6 7 | mp1i | ⊢ ( 𝐹 : ℝ ⟶ ℝ  →  ( ℝ  ×  { 0 } )  Fn  ℝ ) | 
						
							| 9 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 10 | 9 | a1i | ⊢ ( 𝐹 : ℝ ⟶ ℝ  →  ℝ  ∈  V ) | 
						
							| 11 |  | inidm | ⊢ ( ℝ  ∩  ℝ )  =  ℝ | 
						
							| 12 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 13 | 12 | fvconst2 | ⊢ ( 𝑥  ∈  ℝ  →  ( ( ℝ  ×  { 0 } ) ‘ 𝑥 )  =  0 ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ  ∧  𝑥  ∈  ℝ )  →  ( ( ℝ  ×  { 0 } ) ‘ 𝑥 )  =  0 ) | 
						
							| 15 |  | eqidd | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 16 | 8 1 10 10 11 14 15 | ofrfval | ⊢ ( 𝐹 : ℝ ⟶ ℝ  →  ( ( ℝ  ×  { 0 } )  ∘r   ≤  𝐹  ↔  ∀ 𝑥  ∈  ℝ 0  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 17 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 18 | 17 | rexrd | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 19 | 18 | biantrurd | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ  ∧  𝑥  ∈  ℝ )  →  ( 0  ≤  ( 𝐹 ‘ 𝑥 )  ↔  ( ( 𝐹 ‘ 𝑥 )  ∈  ℝ*  ∧  0  ≤  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 20 |  | elxrge0 | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  ( 0 [,] +∞ )  ↔  ( ( 𝐹 ‘ 𝑥 )  ∈  ℝ*  ∧  0  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 21 | 19 20 | bitr4di | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ  ∧  𝑥  ∈  ℝ )  →  ( 0  ≤  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ 𝑥 )  ∈  ( 0 [,] +∞ ) ) ) | 
						
							| 22 | 21 | ralbidva | ⊢ ( 𝐹 : ℝ ⟶ ℝ  →  ( ∀ 𝑥  ∈  ℝ 0  ≤  ( 𝐹 ‘ 𝑥 )  ↔  ∀ 𝑥  ∈  ℝ ( 𝐹 ‘ 𝑥 )  ∈  ( 0 [,] +∞ ) ) ) | 
						
							| 23 | 5 16 22 | 3bitrd | ⊢ ( 𝐹 : ℝ ⟶ ℝ  →  ( 0𝑝  ∘r   ≤  𝐹  ↔  ∀ 𝑥  ∈  ℝ ( 𝐹 ‘ 𝑥 )  ∈  ( 0 [,] +∞ ) ) ) | 
						
							| 24 | 23 | biimpa | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ  ∧  0𝑝  ∘r   ≤  𝐹 )  →  ∀ 𝑥  ∈  ℝ ( 𝐹 ‘ 𝑥 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 25 |  | ffnfv | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ↔  ( 𝐹  Fn  ℝ  ∧  ∀ 𝑥  ∈  ℝ ( 𝐹 ‘ 𝑥 )  ∈  ( 0 [,] +∞ ) ) ) | 
						
							| 26 | 2 24 25 | sylanbrc | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ  ∧  0𝑝  ∘r   ≤  𝐹 )  →  𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |