Metamath Proof Explorer


Theorem xrge0f

Description: A real function is a nonnegative extended real function if all its values are greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014) (Revised by Mario Carneiro, 28-Jul-2014)

Ref Expression
Assertion xrge0f ( ( 𝐹 : ℝ ⟶ ℝ ∧ 0𝑝r𝐹 ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) )

Proof

Step Hyp Ref Expression
1 ffn ( 𝐹 : ℝ ⟶ ℝ → 𝐹 Fn ℝ )
2 1 adantr ( ( 𝐹 : ℝ ⟶ ℝ ∧ 0𝑝r𝐹 ) → 𝐹 Fn ℝ )
3 ax-resscn ℝ ⊆ ℂ
4 3 a1i ( 𝐹 : ℝ ⟶ ℝ → ℝ ⊆ ℂ )
5 4 1 0pledm ( 𝐹 : ℝ ⟶ ℝ → ( 0𝑝r𝐹 ↔ ( ℝ × { 0 } ) ∘r𝐹 ) )
6 0re 0 ∈ ℝ
7 fnconstg ( 0 ∈ ℝ → ( ℝ × { 0 } ) Fn ℝ )
8 6 7 mp1i ( 𝐹 : ℝ ⟶ ℝ → ( ℝ × { 0 } ) Fn ℝ )
9 reex ℝ ∈ V
10 9 a1i ( 𝐹 : ℝ ⟶ ℝ → ℝ ∈ V )
11 inidm ( ℝ ∩ ℝ ) = ℝ
12 c0ex 0 ∈ V
13 12 fvconst2 ( 𝑥 ∈ ℝ → ( ( ℝ × { 0 } ) ‘ 𝑥 ) = 0 )
14 13 adantl ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ℝ × { 0 } ) ‘ 𝑥 ) = 0 )
15 eqidd ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐹𝑥 ) = ( 𝐹𝑥 ) )
16 8 1 10 10 11 14 15 ofrfval ( 𝐹 : ℝ ⟶ ℝ → ( ( ℝ × { 0 } ) ∘r𝐹 ↔ ∀ 𝑥 ∈ ℝ 0 ≤ ( 𝐹𝑥 ) ) )
17 ffvelrn ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐹𝑥 ) ∈ ℝ )
18 17 rexrd ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐹𝑥 ) ∈ ℝ* )
19 18 biantrurd ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( 0 ≤ ( 𝐹𝑥 ) ↔ ( ( 𝐹𝑥 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹𝑥 ) ) ) )
20 elxrge0 ( ( 𝐹𝑥 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐹𝑥 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹𝑥 ) ) )
21 19 20 bitr4di ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( 0 ≤ ( 𝐹𝑥 ) ↔ ( 𝐹𝑥 ) ∈ ( 0 [,] +∞ ) ) )
22 21 ralbidva ( 𝐹 : ℝ ⟶ ℝ → ( ∀ 𝑥 ∈ ℝ 0 ≤ ( 𝐹𝑥 ) ↔ ∀ 𝑥 ∈ ℝ ( 𝐹𝑥 ) ∈ ( 0 [,] +∞ ) ) )
23 5 16 22 3bitrd ( 𝐹 : ℝ ⟶ ℝ → ( 0𝑝r𝐹 ↔ ∀ 𝑥 ∈ ℝ ( 𝐹𝑥 ) ∈ ( 0 [,] +∞ ) ) )
24 23 biimpa ( ( 𝐹 : ℝ ⟶ ℝ ∧ 0𝑝r𝐹 ) → ∀ 𝑥 ∈ ℝ ( 𝐹𝑥 ) ∈ ( 0 [,] +∞ ) )
25 ffnfv ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ↔ ( 𝐹 Fn ℝ ∧ ∀ 𝑥 ∈ ℝ ( 𝐹𝑥 ) ∈ ( 0 [,] +∞ ) ) )
26 2 24 25 sylanbrc ( ( 𝐹 : ℝ ⟶ ℝ ∧ 0𝑝r𝐹 ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) )