Description: A nonnegative extended real is nonnegative. (Contributed by Glauco Siliprandi, 11-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | xrge0ge0 | ⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) → 0 ≤ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxrge0 | ⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ) | |
2 | 1 | biimpi | ⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) → ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ) |
3 | 2 | simprd | ⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) → 0 ≤ 𝐴 ) |