Metamath Proof Explorer


Theorem xrge0haus

Description: The topology of the extended nonnegative real numbers is Hausdorff. (Contributed by Thierry Arnoux, 26-Jul-2017)

Ref Expression
Assertion xrge0haus ( TopOpen ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) ) ∈ Haus

Proof

Step Hyp Ref Expression
1 xrge0topn ( TopOpen ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) ) = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) )
2 xrhaus ( ordTop ‘ ≤ ) ∈ Haus
3 ovex ( 0 [,] +∞ ) ∈ V
4 resthaus ( ( ( ordTop ‘ ≤ ) ∈ Haus ∧ ( 0 [,] +∞ ) ∈ V ) → ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ Haus )
5 2 3 4 mp2an ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ Haus
6 1 5 eqeltri ( TopOpen ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) ) ∈ Haus