Description: The topology of the extended nonnegative real numbers is Hausdorff. (Contributed by Thierry Arnoux, 26-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrge0haus | ⊢ ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) ∈ Haus |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrge0topn | ⊢ ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) | |
| 2 | xrhaus | ⊢ ( ordTop ‘ ≤ ) ∈ Haus | |
| 3 | ovex | ⊢ ( 0 [,] +∞ ) ∈ V | |
| 4 | resthaus | ⊢ ( ( ( ordTop ‘ ≤ ) ∈ Haus ∧ ( 0 [,] +∞ ) ∈ V ) → ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ Haus ) | |
| 5 | 2 3 4 | mp2an | ⊢ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ Haus |
| 6 | 1 5 | eqeltri | ⊢ ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) ∈ Haus |