Metamath Proof Explorer


Theorem xrge0iifcnv

Description: Define a bijection from [ 0 , 1 ] onto [ 0 , +oo ] . (Contributed by Thierry Arnoux, 29-Mar-2017)

Ref Expression
Hypothesis xrge0iifhmeo.1 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) )
Assertion xrge0iifcnv ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) ∧ 𝐹 = ( 𝑦 ∈ ( 0 [,] +∞ ) ↦ if ( 𝑦 = +∞ , 0 , ( exp ‘ - 𝑦 ) ) ) )

Proof

Step Hyp Ref Expression
1 xrge0iifhmeo.1 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) )
2 0xr 0 ∈ ℝ*
3 pnfxr +∞ ∈ ℝ*
4 0lepnf 0 ≤ +∞
5 ubicc2 ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞ ) → +∞ ∈ ( 0 [,] +∞ ) )
6 2 3 4 5 mp3an +∞ ∈ ( 0 [,] +∞ )
7 6 a1i ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑥 = 0 ) → +∞ ∈ ( 0 [,] +∞ ) )
8 icossicc ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ )
9 uncom ( { 0 } ∪ ( 0 (,] 1 ) ) = ( ( 0 (,] 1 ) ∪ { 0 } )
10 1xr 1 ∈ ℝ*
11 0le1 0 ≤ 1
12 snunioc ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1 ) → ( { 0 } ∪ ( 0 (,] 1 ) ) = ( 0 [,] 1 ) )
13 2 10 11 12 mp3an ( { 0 } ∪ ( 0 (,] 1 ) ) = ( 0 [,] 1 )
14 9 13 eqtr3i ( ( 0 (,] 1 ) ∪ { 0 } ) = ( 0 [,] 1 )
15 14 eleq2i ( 𝑥 ∈ ( ( 0 (,] 1 ) ∪ { 0 } ) ↔ 𝑥 ∈ ( 0 [,] 1 ) )
16 elun ( 𝑥 ∈ ( ( 0 (,] 1 ) ∪ { 0 } ) ↔ ( 𝑥 ∈ ( 0 (,] 1 ) ∨ 𝑥 ∈ { 0 } ) )
17 15 16 bitr3i ( 𝑥 ∈ ( 0 [,] 1 ) ↔ ( 𝑥 ∈ ( 0 (,] 1 ) ∨ 𝑥 ∈ { 0 } ) )
18 pm2.53 ( ( 𝑥 ∈ ( 0 (,] 1 ) ∨ 𝑥 ∈ { 0 } ) → ( ¬ 𝑥 ∈ ( 0 (,] 1 ) → 𝑥 ∈ { 0 } ) )
19 17 18 sylbi ( 𝑥 ∈ ( 0 [,] 1 ) → ( ¬ 𝑥 ∈ ( 0 (,] 1 ) → 𝑥 ∈ { 0 } ) )
20 elsni ( 𝑥 ∈ { 0 } → 𝑥 = 0 )
21 19 20 syl6 ( 𝑥 ∈ ( 0 [,] 1 ) → ( ¬ 𝑥 ∈ ( 0 (,] 1 ) → 𝑥 = 0 ) )
22 21 con1d ( 𝑥 ∈ ( 0 [,] 1 ) → ( ¬ 𝑥 = 0 → 𝑥 ∈ ( 0 (,] 1 ) ) )
23 22 imp ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑥 = 0 ) → 𝑥 ∈ ( 0 (,] 1 ) )
24 0le0 0 ≤ 0
25 1re 1 ∈ ℝ
26 ltpnf ( 1 ∈ ℝ → 1 < +∞ )
27 25 26 ax-mp 1 < +∞
28 iocssioo ( ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( 0 ≤ 0 ∧ 1 < +∞ ) ) → ( 0 (,] 1 ) ⊆ ( 0 (,) +∞ ) )
29 2 3 24 27 28 mp4an ( 0 (,] 1 ) ⊆ ( 0 (,) +∞ )
30 ioorp ( 0 (,) +∞ ) = ℝ+
31 29 30 sseqtri ( 0 (,] 1 ) ⊆ ℝ+
32 31 sseli ( 𝑥 ∈ ( 0 (,] 1 ) → 𝑥 ∈ ℝ+ )
33 32 relogcld ( 𝑥 ∈ ( 0 (,] 1 ) → ( log ‘ 𝑥 ) ∈ ℝ )
34 33 renegcld ( 𝑥 ∈ ( 0 (,] 1 ) → - ( log ‘ 𝑥 ) ∈ ℝ )
35 34 rexrd ( 𝑥 ∈ ( 0 (,] 1 ) → - ( log ‘ 𝑥 ) ∈ ℝ* )
36 elioc1 ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( 𝑥 ∈ ( 0 (,] 1 ) ↔ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥𝑥 ≤ 1 ) ) )
37 2 10 36 mp2an ( 𝑥 ∈ ( 0 (,] 1 ) ↔ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥𝑥 ≤ 1 ) )
38 37 simp3bi ( 𝑥 ∈ ( 0 (,] 1 ) → 𝑥 ≤ 1 )
39 1rp 1 ∈ ℝ+
40 39 a1i ( 𝑥 ∈ ( 0 (,] 1 ) → 1 ∈ ℝ+ )
41 32 40 logled ( 𝑥 ∈ ( 0 (,] 1 ) → ( 𝑥 ≤ 1 ↔ ( log ‘ 𝑥 ) ≤ ( log ‘ 1 ) ) )
42 38 41 mpbid ( 𝑥 ∈ ( 0 (,] 1 ) → ( log ‘ 𝑥 ) ≤ ( log ‘ 1 ) )
43 log1 ( log ‘ 1 ) = 0
44 42 43 breqtrdi ( 𝑥 ∈ ( 0 (,] 1 ) → ( log ‘ 𝑥 ) ≤ 0 )
45 33 le0neg1d ( 𝑥 ∈ ( 0 (,] 1 ) → ( ( log ‘ 𝑥 ) ≤ 0 ↔ 0 ≤ - ( log ‘ 𝑥 ) ) )
46 44 45 mpbid ( 𝑥 ∈ ( 0 (,] 1 ) → 0 ≤ - ( log ‘ 𝑥 ) )
47 ltpnf ( - ( log ‘ 𝑥 ) ∈ ℝ → - ( log ‘ 𝑥 ) < +∞ )
48 34 47 syl ( 𝑥 ∈ ( 0 (,] 1 ) → - ( log ‘ 𝑥 ) < +∞ )
49 elico1 ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( - ( log ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( - ( log ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ - ( log ‘ 𝑥 ) ∧ - ( log ‘ 𝑥 ) < +∞ ) ) )
50 2 3 49 mp2an ( - ( log ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( - ( log ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ - ( log ‘ 𝑥 ) ∧ - ( log ‘ 𝑥 ) < +∞ ) )
51 35 46 48 50 syl3anbrc ( 𝑥 ∈ ( 0 (,] 1 ) → - ( log ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) )
52 23 51 syl ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑥 = 0 ) → - ( log ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) )
53 8 52 sselid ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑥 = 0 ) → - ( log ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) )
54 7 53 ifclda ( 𝑥 ∈ ( 0 [,] 1 ) → if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ∈ ( 0 [,] +∞ ) )
55 54 adantl ( ( ⊤ ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ∈ ( 0 [,] +∞ ) )
56 0elunit 0 ∈ ( 0 [,] 1 )
57 56 a1i ( ( 𝑦 ∈ ( 0 [,] +∞ ) ∧ 𝑦 = +∞ ) → 0 ∈ ( 0 [,] 1 ) )
58 iocssicc ( 0 (,] 1 ) ⊆ ( 0 [,] 1 )
59 snunico ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞ ) → ( ( 0 [,) +∞ ) ∪ { +∞ } ) = ( 0 [,] +∞ ) )
60 2 3 4 59 mp3an ( ( 0 [,) +∞ ) ∪ { +∞ } ) = ( 0 [,] +∞ )
61 60 eleq2i ( 𝑦 ∈ ( ( 0 [,) +∞ ) ∪ { +∞ } ) ↔ 𝑦 ∈ ( 0 [,] +∞ ) )
62 elun ( 𝑦 ∈ ( ( 0 [,) +∞ ) ∪ { +∞ } ) ↔ ( 𝑦 ∈ ( 0 [,) +∞ ) ∨ 𝑦 ∈ { +∞ } ) )
63 61 62 bitr3i ( 𝑦 ∈ ( 0 [,] +∞ ) ↔ ( 𝑦 ∈ ( 0 [,) +∞ ) ∨ 𝑦 ∈ { +∞ } ) )
64 pm2.53 ( ( 𝑦 ∈ ( 0 [,) +∞ ) ∨ 𝑦 ∈ { +∞ } ) → ( ¬ 𝑦 ∈ ( 0 [,) +∞ ) → 𝑦 ∈ { +∞ } ) )
65 63 64 sylbi ( 𝑦 ∈ ( 0 [,] +∞ ) → ( ¬ 𝑦 ∈ ( 0 [,) +∞ ) → 𝑦 ∈ { +∞ } ) )
66 elsni ( 𝑦 ∈ { +∞ } → 𝑦 = +∞ )
67 65 66 syl6 ( 𝑦 ∈ ( 0 [,] +∞ ) → ( ¬ 𝑦 ∈ ( 0 [,) +∞ ) → 𝑦 = +∞ ) )
68 67 con1d ( 𝑦 ∈ ( 0 [,] +∞ ) → ( ¬ 𝑦 = +∞ → 𝑦 ∈ ( 0 [,) +∞ ) ) )
69 68 imp ( ( 𝑦 ∈ ( 0 [,] +∞ ) ∧ ¬ 𝑦 = +∞ ) → 𝑦 ∈ ( 0 [,) +∞ ) )
70 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
71 70 sseli ( 𝑦 ∈ ( 0 [,) +∞ ) → 𝑦 ∈ ℝ )
72 71 renegcld ( 𝑦 ∈ ( 0 [,) +∞ ) → - 𝑦 ∈ ℝ )
73 72 reefcld ( 𝑦 ∈ ( 0 [,) +∞ ) → ( exp ‘ - 𝑦 ) ∈ ℝ )
74 73 rexrd ( 𝑦 ∈ ( 0 [,) +∞ ) → ( exp ‘ - 𝑦 ) ∈ ℝ* )
75 efgt0 ( - 𝑦 ∈ ℝ → 0 < ( exp ‘ - 𝑦 ) )
76 72 75 syl ( 𝑦 ∈ ( 0 [,) +∞ ) → 0 < ( exp ‘ - 𝑦 ) )
77 elico1 ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑦 ∈ ( 0 [,) +∞ ) ↔ ( 𝑦 ∈ ℝ* ∧ 0 ≤ 𝑦𝑦 < +∞ ) ) )
78 2 3 77 mp2an ( 𝑦 ∈ ( 0 [,) +∞ ) ↔ ( 𝑦 ∈ ℝ* ∧ 0 ≤ 𝑦𝑦 < +∞ ) )
79 78 simp2bi ( 𝑦 ∈ ( 0 [,) +∞ ) → 0 ≤ 𝑦 )
80 71 le0neg2d ( 𝑦 ∈ ( 0 [,) +∞ ) → ( 0 ≤ 𝑦 ↔ - 𝑦 ≤ 0 ) )
81 79 80 mpbid ( 𝑦 ∈ ( 0 [,) +∞ ) → - 𝑦 ≤ 0 )
82 0re 0 ∈ ℝ
83 efle ( ( - 𝑦 ∈ ℝ ∧ 0 ∈ ℝ ) → ( - 𝑦 ≤ 0 ↔ ( exp ‘ - 𝑦 ) ≤ ( exp ‘ 0 ) ) )
84 72 82 83 sylancl ( 𝑦 ∈ ( 0 [,) +∞ ) → ( - 𝑦 ≤ 0 ↔ ( exp ‘ - 𝑦 ) ≤ ( exp ‘ 0 ) ) )
85 81 84 mpbid ( 𝑦 ∈ ( 0 [,) +∞ ) → ( exp ‘ - 𝑦 ) ≤ ( exp ‘ 0 ) )
86 ef0 ( exp ‘ 0 ) = 1
87 85 86 breqtrdi ( 𝑦 ∈ ( 0 [,) +∞ ) → ( exp ‘ - 𝑦 ) ≤ 1 )
88 elioc1 ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( ( exp ‘ - 𝑦 ) ∈ ( 0 (,] 1 ) ↔ ( ( exp ‘ - 𝑦 ) ∈ ℝ* ∧ 0 < ( exp ‘ - 𝑦 ) ∧ ( exp ‘ - 𝑦 ) ≤ 1 ) ) )
89 2 10 88 mp2an ( ( exp ‘ - 𝑦 ) ∈ ( 0 (,] 1 ) ↔ ( ( exp ‘ - 𝑦 ) ∈ ℝ* ∧ 0 < ( exp ‘ - 𝑦 ) ∧ ( exp ‘ - 𝑦 ) ≤ 1 ) )
90 74 76 87 89 syl3anbrc ( 𝑦 ∈ ( 0 [,) +∞ ) → ( exp ‘ - 𝑦 ) ∈ ( 0 (,] 1 ) )
91 69 90 syl ( ( 𝑦 ∈ ( 0 [,] +∞ ) ∧ ¬ 𝑦 = +∞ ) → ( exp ‘ - 𝑦 ) ∈ ( 0 (,] 1 ) )
92 58 91 sselid ( ( 𝑦 ∈ ( 0 [,] +∞ ) ∧ ¬ 𝑦 = +∞ ) → ( exp ‘ - 𝑦 ) ∈ ( 0 [,] 1 ) )
93 57 92 ifclda ( 𝑦 ∈ ( 0 [,] +∞ ) → if ( 𝑦 = +∞ , 0 , ( exp ‘ - 𝑦 ) ) ∈ ( 0 [,] 1 ) )
94 93 adantl ( ( ⊤ ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → if ( 𝑦 = +∞ , 0 , ( exp ‘ - 𝑦 ) ) ∈ ( 0 [,] 1 ) )
95 eqeq2 ( 0 = if ( 𝑦 = +∞ , 0 , ( exp ‘ - 𝑦 ) ) → ( 𝑥 = 0 ↔ 𝑥 = if ( 𝑦 = +∞ , 0 , ( exp ‘ - 𝑦 ) ) ) )
96 95 bibi1d ( 0 = if ( 𝑦 = +∞ , 0 , ( exp ‘ - 𝑦 ) ) → ( ( 𝑥 = 0 ↔ 𝑦 = if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ) ↔ ( 𝑥 = if ( 𝑦 = +∞ , 0 , ( exp ‘ - 𝑦 ) ) ↔ 𝑦 = if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ) ) )
97 eqeq2 ( ( exp ‘ - 𝑦 ) = if ( 𝑦 = +∞ , 0 , ( exp ‘ - 𝑦 ) ) → ( 𝑥 = ( exp ‘ - 𝑦 ) ↔ 𝑥 = if ( 𝑦 = +∞ , 0 , ( exp ‘ - 𝑦 ) ) ) )
98 97 bibi1d ( ( exp ‘ - 𝑦 ) = if ( 𝑦 = +∞ , 0 , ( exp ‘ - 𝑦 ) ) → ( ( 𝑥 = ( exp ‘ - 𝑦 ) ↔ 𝑦 = if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ) ↔ ( 𝑥 = if ( 𝑦 = +∞ , 0 , ( exp ‘ - 𝑦 ) ) ↔ 𝑦 = if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ) ) )
99 simpr ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 = +∞ ) → 𝑦 = +∞ )
100 iftrue ( 𝑥 = 0 → if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) = +∞ )
101 100 eqeq2d ( 𝑥 = 0 → ( 𝑦 = if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ↔ 𝑦 = +∞ ) )
102 99 101 syl5ibrcom ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 = +∞ ) → ( 𝑥 = 0 → 𝑦 = if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ) )
103 ubico ( ( 0 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ¬ +∞ ∈ ( 0 [,) +∞ ) )
104 82 3 103 mp2an ¬ +∞ ∈ ( 0 [,) +∞ )
105 104 nelir +∞ ∉ ( 0 [,) +∞ )
106 neleq1 ( 𝑦 = +∞ → ( 𝑦 ∉ ( 0 [,) +∞ ) ↔ +∞ ∉ ( 0 [,) +∞ ) ) )
107 106 adantl ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 = +∞ ) → ( 𝑦 ∉ ( 0 [,) +∞ ) ↔ +∞ ∉ ( 0 [,) +∞ ) ) )
108 105 107 mpbiri ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 = +∞ ) → 𝑦 ∉ ( 0 [,) +∞ ) )
109 neleq1 ( 𝑦 = if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) → ( 𝑦 ∉ ( 0 [,) +∞ ) ↔ if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ∉ ( 0 [,) +∞ ) ) )
110 108 109 syl5ibcom ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 = +∞ ) → ( 𝑦 = if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) → if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ∉ ( 0 [,) +∞ ) ) )
111 df-nel ( if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ∉ ( 0 [,) +∞ ) ↔ ¬ if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ∈ ( 0 [,) +∞ ) )
112 iffalse ( ¬ 𝑥 = 0 → if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) = - ( log ‘ 𝑥 ) )
113 112 adantl ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑥 = 0 ) → if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) = - ( log ‘ 𝑥 ) )
114 113 52 eqeltrd ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑥 = 0 ) → if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ∈ ( 0 [,) +∞ ) )
115 114 ex ( 𝑥 ∈ ( 0 [,] 1 ) → ( ¬ 𝑥 = 0 → if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ∈ ( 0 [,) +∞ ) ) )
116 115 ad2antrr ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 = +∞ ) → ( ¬ 𝑥 = 0 → if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ∈ ( 0 [,) +∞ ) ) )
117 116 con1d ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 = +∞ ) → ( ¬ if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ∈ ( 0 [,) +∞ ) → 𝑥 = 0 ) )
118 111 117 syl5bi ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 = +∞ ) → ( if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ∉ ( 0 [,) +∞ ) → 𝑥 = 0 ) )
119 110 118 syld ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 = +∞ ) → ( 𝑦 = if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) → 𝑥 = 0 ) )
120 102 119 impbid ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 = +∞ ) → ( 𝑥 = 0 ↔ 𝑦 = if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ) )
121 eqeq2 ( +∞ = if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) → ( 𝑦 = +∞ ↔ 𝑦 = if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ) )
122 121 bibi2d ( +∞ = if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) → ( ( 𝑥 = ( exp ‘ - 𝑦 ) ↔ 𝑦 = +∞ ) ↔ ( 𝑥 = ( exp ‘ - 𝑦 ) ↔ 𝑦 = if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ) ) )
123 eqeq2 ( - ( log ‘ 𝑥 ) = if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) → ( 𝑦 = - ( log ‘ 𝑥 ) ↔ 𝑦 = if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ) )
124 123 bibi2d ( - ( log ‘ 𝑥 ) = if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) → ( ( 𝑥 = ( exp ‘ - 𝑦 ) ↔ 𝑦 = - ( log ‘ 𝑥 ) ) ↔ ( 𝑥 = ( exp ‘ - 𝑦 ) ↔ 𝑦 = if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ) ) )
125 82 a1i ( ( 𝑦 ∈ ( 0 [,] +∞ ) ∧ ¬ 𝑦 = +∞ ) → 0 ∈ ℝ )
126 69 76 syl ( ( 𝑦 ∈ ( 0 [,] +∞ ) ∧ ¬ 𝑦 = +∞ ) → 0 < ( exp ‘ - 𝑦 ) )
127 125 126 ltned ( ( 𝑦 ∈ ( 0 [,] +∞ ) ∧ ¬ 𝑦 = +∞ ) → 0 ≠ ( exp ‘ - 𝑦 ) )
128 127 adantll ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ ¬ 𝑦 = +∞ ) → 0 ≠ ( exp ‘ - 𝑦 ) )
129 128 neneqd ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ ¬ 𝑦 = +∞ ) → ¬ 0 = ( exp ‘ - 𝑦 ) )
130 eqeq1 ( 𝑥 = 0 → ( 𝑥 = ( exp ‘ - 𝑦 ) ↔ 0 = ( exp ‘ - 𝑦 ) ) )
131 130 notbid ( 𝑥 = 0 → ( ¬ 𝑥 = ( exp ‘ - 𝑦 ) ↔ ¬ 0 = ( exp ‘ - 𝑦 ) ) )
132 129 131 syl5ibrcom ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ ¬ 𝑦 = +∞ ) → ( 𝑥 = 0 → ¬ 𝑥 = ( exp ‘ - 𝑦 ) ) )
133 132 imp ( ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ ¬ 𝑦 = +∞ ) ∧ 𝑥 = 0 ) → ¬ 𝑥 = ( exp ‘ - 𝑦 ) )
134 simplr ( ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ ¬ 𝑦 = +∞ ) ∧ 𝑥 = 0 ) → ¬ 𝑦 = +∞ )
135 133 134 2falsed ( ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ ¬ 𝑦 = +∞ ) ∧ 𝑥 = 0 ) → ( 𝑥 = ( exp ‘ - 𝑦 ) ↔ 𝑦 = +∞ ) )
136 eqcom ( 𝑥 = ( exp ‘ - 𝑦 ) ↔ ( exp ‘ - 𝑦 ) = 𝑥 )
137 136 a1i ( ( 𝑥 ∈ ( 0 (,] 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 = ( exp ‘ - 𝑦 ) ↔ ( exp ‘ - 𝑦 ) = 𝑥 ) )
138 relogeftb ( ( 𝑥 ∈ ℝ+ ∧ - 𝑦 ∈ ℝ ) → ( ( log ‘ 𝑥 ) = - 𝑦 ↔ ( exp ‘ - 𝑦 ) = 𝑥 ) )
139 32 72 138 syl2an ( ( 𝑥 ∈ ( 0 (,] 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( ( log ‘ 𝑥 ) = - 𝑦 ↔ ( exp ‘ - 𝑦 ) = 𝑥 ) )
140 33 recnd ( 𝑥 ∈ ( 0 (,] 1 ) → ( log ‘ 𝑥 ) ∈ ℂ )
141 71 recnd ( 𝑦 ∈ ( 0 [,) +∞ ) → 𝑦 ∈ ℂ )
142 negcon2 ( ( ( log ‘ 𝑥 ) ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( log ‘ 𝑥 ) = - 𝑦𝑦 = - ( log ‘ 𝑥 ) ) )
143 140 141 142 syl2an ( ( 𝑥 ∈ ( 0 (,] 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( ( log ‘ 𝑥 ) = - 𝑦𝑦 = - ( log ‘ 𝑥 ) ) )
144 137 139 143 3bitr2d ( ( 𝑥 ∈ ( 0 (,] 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 = ( exp ‘ - 𝑦 ) ↔ 𝑦 = - ( log ‘ 𝑥 ) ) )
145 23 69 144 syl2an ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑥 = 0 ) ∧ ( 𝑦 ∈ ( 0 [,] +∞ ) ∧ ¬ 𝑦 = +∞ ) ) → ( 𝑥 = ( exp ‘ - 𝑦 ) ↔ 𝑦 = - ( log ‘ 𝑥 ) ) )
146 145 an4s ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ ( ¬ 𝑥 = 0 ∧ ¬ 𝑦 = +∞ ) ) → ( 𝑥 = ( exp ‘ - 𝑦 ) ↔ 𝑦 = - ( log ‘ 𝑥 ) ) )
147 146 anass1rs ( ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ ¬ 𝑦 = +∞ ) ∧ ¬ 𝑥 = 0 ) → ( 𝑥 = ( exp ‘ - 𝑦 ) ↔ 𝑦 = - ( log ‘ 𝑥 ) ) )
148 122 124 135 147 ifbothda ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ ¬ 𝑦 = +∞ ) → ( 𝑥 = ( exp ‘ - 𝑦 ) ↔ 𝑦 = if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ) )
149 96 98 120 148 ifbothda ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( 𝑥 = if ( 𝑦 = +∞ , 0 , ( exp ‘ - 𝑦 ) ) ↔ 𝑦 = if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ) )
150 149 adantl ( ( ⊤ ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ) → ( 𝑥 = if ( 𝑦 = +∞ , 0 , ( exp ‘ - 𝑦 ) ) ↔ 𝑦 = if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ) )
151 1 55 94 150 f1ocnv2d ( ⊤ → ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) ∧ 𝐹 = ( 𝑦 ∈ ( 0 [,] +∞ ) ↦ if ( 𝑦 = +∞ , 0 , ( exp ‘ - 𝑦 ) ) ) ) )
152 151 mptru ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) ∧ 𝐹 = ( 𝑦 ∈ ( 0 [,] +∞ ) ↦ if ( 𝑦 = +∞ , 0 , ( exp ‘ - 𝑦 ) ) ) )