Step |
Hyp |
Ref |
Expression |
1 |
|
xrge0iifhmeo.1 |
⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ) |
2 |
|
iocssicc |
⊢ ( 0 (,] 1 ) ⊆ ( 0 [,] 1 ) |
3 |
2
|
sseli |
⊢ ( 𝑋 ∈ ( 0 (,] 1 ) → 𝑋 ∈ ( 0 [,] 1 ) ) |
4 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = 0 ↔ 𝑋 = 0 ) ) |
5 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( log ‘ 𝑥 ) = ( log ‘ 𝑋 ) ) |
6 |
5
|
negeqd |
⊢ ( 𝑥 = 𝑋 → - ( log ‘ 𝑥 ) = - ( log ‘ 𝑋 ) ) |
7 |
4 6
|
ifbieq2d |
⊢ ( 𝑥 = 𝑋 → if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) = if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) ) |
8 |
|
pnfex |
⊢ +∞ ∈ V |
9 |
|
negex |
⊢ - ( log ‘ 𝑋 ) ∈ V |
10 |
8 9
|
ifex |
⊢ if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) ∈ V |
11 |
7 1 10
|
fvmpt |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ 𝑋 ) = if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) ) |
12 |
3 11
|
syl |
⊢ ( 𝑋 ∈ ( 0 (,] 1 ) → ( 𝐹 ‘ 𝑋 ) = if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) ) |
13 |
|
0xr |
⊢ 0 ∈ ℝ* |
14 |
|
1re |
⊢ 1 ∈ ℝ |
15 |
|
elioc2 |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( 𝑋 ∈ ( 0 (,] 1 ) ↔ ( 𝑋 ∈ ℝ ∧ 0 < 𝑋 ∧ 𝑋 ≤ 1 ) ) ) |
16 |
13 14 15
|
mp2an |
⊢ ( 𝑋 ∈ ( 0 (,] 1 ) ↔ ( 𝑋 ∈ ℝ ∧ 0 < 𝑋 ∧ 𝑋 ≤ 1 ) ) |
17 |
16
|
simp2bi |
⊢ ( 𝑋 ∈ ( 0 (,] 1 ) → 0 < 𝑋 ) |
18 |
17
|
gt0ne0d |
⊢ ( 𝑋 ∈ ( 0 (,] 1 ) → 𝑋 ≠ 0 ) |
19 |
18
|
neneqd |
⊢ ( 𝑋 ∈ ( 0 (,] 1 ) → ¬ 𝑋 = 0 ) |
20 |
19
|
iffalsed |
⊢ ( 𝑋 ∈ ( 0 (,] 1 ) → if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) = - ( log ‘ 𝑋 ) ) |
21 |
12 20
|
eqtrd |
⊢ ( 𝑋 ∈ ( 0 (,] 1 ) → ( 𝐹 ‘ 𝑋 ) = - ( log ‘ 𝑋 ) ) |