Metamath Proof Explorer


Theorem xrge0iifcv

Description: The defined function's value in the real. (Contributed by Thierry Arnoux, 1-Apr-2017)

Ref Expression
Hypothesis xrge0iifhmeo.1 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) )
Assertion xrge0iifcv ( 𝑋 ∈ ( 0 (,] 1 ) → ( 𝐹𝑋 ) = - ( log ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 xrge0iifhmeo.1 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) )
2 iocssicc ( 0 (,] 1 ) ⊆ ( 0 [,] 1 )
3 2 sseli ( 𝑋 ∈ ( 0 (,] 1 ) → 𝑋 ∈ ( 0 [,] 1 ) )
4 eqeq1 ( 𝑥 = 𝑋 → ( 𝑥 = 0 ↔ 𝑋 = 0 ) )
5 fveq2 ( 𝑥 = 𝑋 → ( log ‘ 𝑥 ) = ( log ‘ 𝑋 ) )
6 5 negeqd ( 𝑥 = 𝑋 → - ( log ‘ 𝑥 ) = - ( log ‘ 𝑋 ) )
7 4 6 ifbieq2d ( 𝑥 = 𝑋 → if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) = if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) )
8 pnfex +∞ ∈ V
9 negex - ( log ‘ 𝑋 ) ∈ V
10 8 9 ifex if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) ∈ V
11 7 1 10 fvmpt ( 𝑋 ∈ ( 0 [,] 1 ) → ( 𝐹𝑋 ) = if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) )
12 3 11 syl ( 𝑋 ∈ ( 0 (,] 1 ) → ( 𝐹𝑋 ) = if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) )
13 0xr 0 ∈ ℝ*
14 1re 1 ∈ ℝ
15 elioc2 ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( 𝑋 ∈ ( 0 (,] 1 ) ↔ ( 𝑋 ∈ ℝ ∧ 0 < 𝑋𝑋 ≤ 1 ) ) )
16 13 14 15 mp2an ( 𝑋 ∈ ( 0 (,] 1 ) ↔ ( 𝑋 ∈ ℝ ∧ 0 < 𝑋𝑋 ≤ 1 ) )
17 16 simp2bi ( 𝑋 ∈ ( 0 (,] 1 ) → 0 < 𝑋 )
18 17 gt0ne0d ( 𝑋 ∈ ( 0 (,] 1 ) → 𝑋 ≠ 0 )
19 18 neneqd ( 𝑋 ∈ ( 0 (,] 1 ) → ¬ 𝑋 = 0 )
20 19 iffalsed ( 𝑋 ∈ ( 0 (,] 1 ) → if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) = - ( log ‘ 𝑋 ) )
21 12 20 eqtrd ( 𝑋 ∈ ( 0 (,] 1 ) → ( 𝐹𝑋 ) = - ( log ‘ 𝑋 ) )