| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xrge0iifhmeo.1 | ⊢ 𝐹  =  ( 𝑥  ∈  ( 0 [,] 1 )  ↦  if ( 𝑥  =  0 ,  +∞ ,  - ( log ‘ 𝑥 ) ) ) | 
						
							| 2 |  | xrge0iifhmeo.k | ⊢ 𝐽  =  ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,] +∞ ) ) | 
						
							| 3 |  | letsr | ⊢  ≤   ∈   TosetRel | 
						
							| 4 |  | tsrps | ⊢ (  ≤   ∈   TosetRel   →   ≤   ∈  PosetRel ) | 
						
							| 5 | 3 4 | ax-mp | ⊢  ≤   ∈  PosetRel | 
						
							| 6 | 5 | elexi | ⊢  ≤   ∈  V | 
						
							| 7 | 6 | inex1 | ⊢ (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  ∈  V | 
						
							| 8 |  | cnvps | ⊢ (  ≤   ∈  PosetRel  →  ◡  ≤   ∈  PosetRel ) | 
						
							| 9 | 5 8 | ax-mp | ⊢ ◡  ≤   ∈  PosetRel | 
						
							| 10 | 9 | elexi | ⊢ ◡  ≤   ∈  V | 
						
							| 11 | 10 | inex1 | ⊢ ( ◡  ≤   ∩  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) )  ∈  V | 
						
							| 12 | 1 | xrge0iifiso | ⊢ 𝐹  Isom   <  ,  ◡  <  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) ) | 
						
							| 13 |  | iccssxr | ⊢ ( 0 [,] 1 )  ⊆  ℝ* | 
						
							| 14 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 15 |  | gtiso | ⊢ ( ( ( 0 [,] 1 )  ⊆  ℝ*  ∧  ( 0 [,] +∞ )  ⊆  ℝ* )  →  ( 𝐹  Isom   <  ,  ◡  <  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) )  ↔  𝐹  Isom   ≤  ,  ◡  ≤  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) ) ) ) | 
						
							| 16 | 13 14 15 | mp2an | ⊢ ( 𝐹  Isom   <  ,  ◡  <  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) )  ↔  𝐹  Isom   ≤  ,  ◡  ≤  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) ) ) | 
						
							| 17 | 12 16 | mpbi | ⊢ 𝐹  Isom   ≤  ,  ◡  ≤  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) ) | 
						
							| 18 |  | isores1 | ⊢ ( 𝐹  Isom   ≤  ,  ◡  ≤  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) )  ↔  𝐹  Isom  (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) ,  ◡  ≤  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) ) ) | 
						
							| 19 | 17 18 | mpbi | ⊢ 𝐹  Isom  (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) ,  ◡  ≤  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) ) | 
						
							| 20 |  | isores2 | ⊢ ( 𝐹  Isom  (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) ,  ◡  ≤  ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) )  ↔  𝐹  Isom  (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) ,  ( ◡  ≤   ∩  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) ) ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) ) ) | 
						
							| 21 | 19 20 | mpbi | ⊢ 𝐹  Isom  (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) ,  ( ◡  ≤   ∩  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) ) ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) ) | 
						
							| 22 |  | ledm | ⊢ ℝ*  =  dom   ≤ | 
						
							| 23 | 22 | psssdm | ⊢ ( (  ≤   ∈  PosetRel  ∧  ( 0 [,] 1 )  ⊆  ℝ* )  →  dom  (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  =  ( 0 [,] 1 ) ) | 
						
							| 24 | 5 13 23 | mp2an | ⊢ dom  (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  =  ( 0 [,] 1 ) | 
						
							| 25 | 24 | eqcomi | ⊢ ( 0 [,] 1 )  =  dom  (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 26 |  | lern | ⊢ ℝ*  =  ran   ≤ | 
						
							| 27 |  | df-rn | ⊢ ran   ≤   =  dom  ◡  ≤ | 
						
							| 28 | 26 27 | eqtri | ⊢ ℝ*  =  dom  ◡  ≤ | 
						
							| 29 | 28 | psssdm | ⊢ ( ( ◡  ≤   ∈  PosetRel  ∧  ( 0 [,] +∞ )  ⊆  ℝ* )  →  dom  ( ◡  ≤   ∩  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) )  =  ( 0 [,] +∞ ) ) | 
						
							| 30 | 9 14 29 | mp2an | ⊢ dom  ( ◡  ≤   ∩  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) )  =  ( 0 [,] +∞ ) | 
						
							| 31 | 30 | eqcomi | ⊢ ( 0 [,] +∞ )  =  dom  ( ◡  ≤   ∩  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) ) | 
						
							| 32 | 25 31 | ordthmeo | ⊢ ( ( (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  ∈  V  ∧  ( ◡  ≤   ∩  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) )  ∈  V  ∧  𝐹  Isom  (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) ,  ( ◡  ≤   ∩  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) ) ( ( 0 [,] 1 ) ,  ( 0 [,] +∞ ) ) )  →  𝐹  ∈  ( ( ordTop ‘ (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ‘ ( ◡  ≤   ∩  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) ) ) ) ) | 
						
							| 33 | 7 11 21 32 | mp3an | ⊢ 𝐹  ∈  ( ( ordTop ‘ (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ‘ ( ◡  ≤   ∩  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) ) ) ) | 
						
							| 34 |  | dfii5 | ⊢ II  =  ( ordTop ‘ (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) ) | 
						
							| 35 |  | iccss2 | ⊢ ( ( 𝑥  ∈  ( 0 [,] +∞ )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  →  ( 𝑥 [,] 𝑦 )  ⊆  ( 0 [,] +∞ ) ) | 
						
							| 36 | 14 35 | cnvordtrestixx | ⊢ ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,] +∞ ) )  =  ( ordTop ‘ ( ◡  ≤   ∩  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) ) ) | 
						
							| 37 | 2 36 | eqtri | ⊢ 𝐽  =  ( ordTop ‘ ( ◡  ≤   ∩  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) ) ) | 
						
							| 38 | 34 37 | oveq12i | ⊢ ( II Homeo 𝐽 )  =  ( ( ordTop ‘ (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ‘ ( ◡  ≤   ∩  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) ) ) ) | 
						
							| 39 | 33 38 | eleqtrri | ⊢ 𝐹  ∈  ( II Homeo 𝐽 ) |