Step |
Hyp |
Ref |
Expression |
1 |
|
xrge0iifhmeo.1 |
⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ) |
2 |
|
xrge0iifhmeo.k |
⊢ 𝐽 = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) |
3 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) = ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) |
4 |
3
|
iistmd |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) ∈ TopMnd |
5 |
|
tmdmnd |
⊢ ( ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) ∈ TopMnd → ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) ∈ Mnd ) |
6 |
4 5
|
ax-mp |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) ∈ Mnd |
7 |
|
xrge0cmn |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd |
8 |
|
cmnmnd |
⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ) |
9 |
7 8
|
ax-mp |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd |
10 |
6 9
|
pm3.2i |
⊢ ( ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) ∈ Mnd ∧ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ) |
11 |
1
|
xrge0iifcnv |
⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) ∧ ◡ 𝐹 = ( 𝑦 ∈ ( 0 [,] +∞ ) ↦ if ( 𝑦 = +∞ , 0 , ( exp ‘ - 𝑦 ) ) ) ) |
12 |
11
|
simpli |
⊢ 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) |
13 |
|
f1of |
⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) → 𝐹 : ( 0 [,] 1 ) ⟶ ( 0 [,] +∞ ) ) |
14 |
12 13
|
ax-mp |
⊢ 𝐹 : ( 0 [,] 1 ) ⟶ ( 0 [,] +∞ ) |
15 |
1 2
|
xrge0iifhom |
⊢ ( ( 𝑦 ∈ ( 0 [,] 1 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) +𝑒 ( 𝐹 ‘ 𝑧 ) ) ) |
16 |
15
|
rgen2 |
⊢ ∀ 𝑦 ∈ ( 0 [,] 1 ) ∀ 𝑧 ∈ ( 0 [,] 1 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) +𝑒 ( 𝐹 ‘ 𝑧 ) ) |
17 |
1 2
|
xrge0iif1 |
⊢ ( 𝐹 ‘ 1 ) = 0 |
18 |
14 16 17
|
3pm3.2i |
⊢ ( 𝐹 : ( 0 [,] 1 ) ⟶ ( 0 [,] +∞ ) ∧ ∀ 𝑦 ∈ ( 0 [,] 1 ) ∀ 𝑧 ∈ ( 0 [,] 1 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) +𝑒 ( 𝐹 ‘ 𝑧 ) ) ∧ ( 𝐹 ‘ 1 ) = 0 ) |
19 |
|
unitsscn |
⊢ ( 0 [,] 1 ) ⊆ ℂ |
20 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
21 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
22 |
20 21
|
mgpbas |
⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
23 |
3 22
|
ressbas2 |
⊢ ( ( 0 [,] 1 ) ⊆ ℂ → ( 0 [,] 1 ) = ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) ) ) |
24 |
19 23
|
ax-mp |
⊢ ( 0 [,] 1 ) = ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) ) |
25 |
|
xrge0base |
⊢ ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
26 |
|
cnfldex |
⊢ ℂfld ∈ V |
27 |
|
ovex |
⊢ ( 0 [,] 1 ) ∈ V |
28 |
|
eqid |
⊢ ( ℂfld ↾s ( 0 [,] 1 ) ) = ( ℂfld ↾s ( 0 [,] 1 ) ) |
29 |
28 20
|
mgpress |
⊢ ( ( ℂfld ∈ V ∧ ( 0 [,] 1 ) ∈ V ) → ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) = ( mulGrp ‘ ( ℂfld ↾s ( 0 [,] 1 ) ) ) ) |
30 |
26 27 29
|
mp2an |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) = ( mulGrp ‘ ( ℂfld ↾s ( 0 [,] 1 ) ) ) |
31 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
32 |
28 31
|
ressmulr |
⊢ ( ( 0 [,] 1 ) ∈ V → · = ( .r ‘ ( ℂfld ↾s ( 0 [,] 1 ) ) ) ) |
33 |
27 32
|
ax-mp |
⊢ · = ( .r ‘ ( ℂfld ↾s ( 0 [,] 1 ) ) ) |
34 |
30 33
|
mgpplusg |
⊢ · = ( +g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) ) |
35 |
|
xrge0plusg |
⊢ +𝑒 = ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
36 |
|
cnring |
⊢ ℂfld ∈ Ring |
37 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
38 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
39 |
3 21 38
|
ringidss |
⊢ ( ( ℂfld ∈ Ring ∧ ( 0 [,] 1 ) ⊆ ℂ ∧ 1 ∈ ( 0 [,] 1 ) ) → 1 = ( 0g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) ) ) |
40 |
36 19 37 39
|
mp3an |
⊢ 1 = ( 0g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) ) |
41 |
|
xrge00 |
⊢ 0 = ( 0g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
42 |
24 25 34 35 40 41
|
ismhm |
⊢ ( 𝐹 ∈ ( ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) MndHom ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) ↔ ( ( ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) ∈ Mnd ∧ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ) ∧ ( 𝐹 : ( 0 [,] 1 ) ⟶ ( 0 [,] +∞ ) ∧ ∀ 𝑦 ∈ ( 0 [,] 1 ) ∀ 𝑧 ∈ ( 0 [,] 1 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) +𝑒 ( 𝐹 ‘ 𝑧 ) ) ∧ ( 𝐹 ‘ 1 ) = 0 ) ) ) |
43 |
10 18 42
|
mpbir2an |
⊢ 𝐹 ∈ ( ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) MndHom ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |