| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ssel2 | 
							⊢ ( ( 𝐴  ⊆  ( 0 [,] +∞ )  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  ( 0 [,] +∞ ) )  | 
						
						
							| 2 | 
							
								
							 | 
							0xr | 
							⊢ 0  ∈  ℝ*  | 
						
						
							| 3 | 
							
								
							 | 
							pnfxr | 
							⊢ +∞  ∈  ℝ*  | 
						
						
							| 4 | 
							
								
							 | 
							iccgelb | 
							⊢ ( ( 0  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  →  0  ≤  𝑦 )  | 
						
						
							| 5 | 
							
								2 3 4
							 | 
							mp3an12 | 
							⊢ ( 𝑦  ∈  ( 0 [,] +∞ )  →  0  ≤  𝑦 )  | 
						
						
							| 6 | 
							
								
							 | 
							eliccxr | 
							⊢ ( 𝑦  ∈  ( 0 [,] +∞ )  →  𝑦  ∈  ℝ* )  | 
						
						
							| 7 | 
							
								
							 | 
							xrlenlt | 
							⊢ ( ( 0  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  →  ( 0  ≤  𝑦  ↔  ¬  𝑦  <  0 ) )  | 
						
						
							| 8 | 
							
								2 6 7
							 | 
							sylancr | 
							⊢ ( 𝑦  ∈  ( 0 [,] +∞ )  →  ( 0  ≤  𝑦  ↔  ¬  𝑦  <  0 ) )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							mpbid | 
							⊢ ( 𝑦  ∈  ( 0 [,] +∞ )  →  ¬  𝑦  <  0 )  | 
						
						
							| 10 | 
							
								1 9
							 | 
							syl | 
							⊢ ( ( 𝐴  ⊆  ( 0 [,] +∞ )  ∧  𝑦  ∈  𝐴 )  →  ¬  𝑦  <  0 )  | 
						
						
							| 11 | 
							
								10
							 | 
							ralrimiva | 
							⊢ ( 𝐴  ⊆  ( 0 [,] +∞ )  →  ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  0 )  | 
						
						
							| 12 | 
							
								11
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝐴  ⊆  ( 0 [,] +∞ )  ∧  𝑤  ∈  ℝ* )  ∧  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑤  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  ∧  𝑤  ≤  0 )  →  ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  0 )  | 
						
						
							| 13 | 
							
								
							 | 
							iccssxr | 
							⊢ ( 0 [,] +∞ )  ⊆  ℝ*  | 
						
						
							| 14 | 
							
								
							 | 
							ssralv | 
							⊢ ( ( 0 [,] +∞ )  ⊆  ℝ*  →  ( ∀ 𝑦  ∈  ℝ* ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 )  →  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							ax-mp | 
							⊢ ( ∀ 𝑦  ∈  ℝ* ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 )  →  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simplll | 
							⊢ ( ( ( ( 𝑤  ∈  ℝ*  ∧  𝑤  ≤  0 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  0  <  𝑦 )  →  𝑤  ∈  ℝ* )  | 
						
						
							| 17 | 
							
								2
							 | 
							a1i | 
							⊢ ( ( ( ( 𝑤  ∈  ℝ*  ∧  𝑤  ≤  0 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  0  <  𝑦 )  →  0  ∈  ℝ* )  | 
						
						
							| 18 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ( 𝑤  ∈  ℝ*  ∧  𝑤  ≤  0 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  0  <  𝑦 )  →  𝑦  ∈  ( 0 [,] +∞ ) )  | 
						
						
							| 19 | 
							
								13 18
							 | 
							sselid | 
							⊢ ( ( ( ( 𝑤  ∈  ℝ*  ∧  𝑤  ≤  0 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  0  <  𝑦 )  →  𝑦  ∈  ℝ* )  | 
						
						
							| 20 | 
							
								
							 | 
							simpllr | 
							⊢ ( ( ( ( 𝑤  ∈  ℝ*  ∧  𝑤  ≤  0 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  0  <  𝑦 )  →  𝑤  ≤  0 )  | 
						
						
							| 21 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝑤  ∈  ℝ*  ∧  𝑤  ≤  0 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  0  <  𝑦 )  →  0  <  𝑦 )  | 
						
						
							| 22 | 
							
								16 17 19 20 21
							 | 
							xrlelttrd | 
							⊢ ( ( ( ( 𝑤  ∈  ℝ*  ∧  𝑤  ≤  0 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  0  <  𝑦 )  →  𝑤  <  𝑦 )  | 
						
						
							| 23 | 
							
								22
							 | 
							ex | 
							⊢ ( ( ( 𝑤  ∈  ℝ*  ∧  𝑤  ≤  0 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  →  ( 0  <  𝑦  →  𝑤  <  𝑦 ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							imim1d | 
							⊢ ( ( ( 𝑤  ∈  ℝ*  ∧  𝑤  ≤  0 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  →  ( ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 )  →  ( 0  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							ralimdva | 
							⊢ ( ( 𝑤  ∈  ℝ*  ∧  𝑤  ≤  0 )  →  ( ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 )  →  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 0  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  | 
						
						
							| 26 | 
							
								15 25
							 | 
							syl5 | 
							⊢ ( ( 𝑤  ∈  ℝ*  ∧  𝑤  ≤  0 )  →  ( ∀ 𝑦  ∈  ℝ* ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 )  →  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 0  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							adantll | 
							⊢ ( ( ( 𝐴  ⊆  ( 0 [,] +∞ )  ∧  𝑤  ∈  ℝ* )  ∧  𝑤  ≤  0 )  →  ( ∀ 𝑦  ∈  ℝ* ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 )  →  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 0  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							imp | 
							⊢ ( ( ( ( 𝐴  ⊆  ( 0 [,] +∞ )  ∧  𝑤  ∈  ℝ* )  ∧  𝑤  ≤  0 )  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) )  →  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 0  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							adantrl | 
							⊢ ( ( ( ( 𝐴  ⊆  ( 0 [,] +∞ )  ∧  𝑤  ∈  ℝ* )  ∧  𝑤  ≤  0 )  ∧  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑤  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  →  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 0  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							an32s | 
							⊢ ( ( ( ( 𝐴  ⊆  ( 0 [,] +∞ )  ∧  𝑤  ∈  ℝ* )  ∧  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑤  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  ∧  𝑤  ≤  0 )  →  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 0  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							0e0iccpnf | 
							⊢ 0  ∈  ( 0 [,] +∞ )  | 
						
						
							| 32 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑥  =  0  →  ( 𝑦  <  𝑥  ↔  𝑦  <  0 ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							notbid | 
							⊢ ( 𝑥  =  0  →  ( ¬  𝑦  <  𝑥  ↔  ¬  𝑦  <  0 ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							ralbidv | 
							⊢ ( 𝑥  =  0  →  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑥  ↔  ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  0 ) )  | 
						
						
							| 35 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑥  =  0  →  ( 𝑥  <  𝑦  ↔  0  <  𝑦 ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							imbi1d | 
							⊢ ( 𝑥  =  0  →  ( ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 )  ↔  ( 0  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							ralbidv | 
							⊢ ( 𝑥  =  0  →  ( ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 )  ↔  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 0  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  | 
						
						
							| 38 | 
							
								34 37
							 | 
							anbi12d | 
							⊢ ( 𝑥  =  0  →  ( ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) )  ↔  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  0  ∧  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 0  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							rspcev | 
							⊢ ( ( 0  ∈  ( 0 [,] +∞ )  ∧  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  0  ∧  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 0  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  →  ∃ 𝑥  ∈  ( 0 [,] +∞ ) ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  | 
						
						
							| 40 | 
							
								31 39
							 | 
							mpan | 
							⊢ ( ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  0  ∧  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 0  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) )  →  ∃ 𝑥  ∈  ( 0 [,] +∞ ) ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  | 
						
						
							| 41 | 
							
								12 30 40
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝐴  ⊆  ( 0 [,] +∞ )  ∧  𝑤  ∈  ℝ* )  ∧  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑤  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  ∧  𝑤  ≤  0 )  →  ∃ 𝑥  ∈  ( 0 [,] +∞ ) ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  | 
						
						
							| 42 | 
							
								
							 | 
							simpllr | 
							⊢ ( ( ( ( 𝐴  ⊆  ( 0 [,] +∞ )  ∧  𝑤  ∈  ℝ* )  ∧  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑤  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  ∧  0  ≤  𝑤 )  →  𝑤  ∈  ℝ* )  | 
						
						
							| 43 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝐴  ⊆  ( 0 [,] +∞ )  ∧  𝑤  ∈  ℝ* )  ∧  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑤  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  ∧  0  ≤  𝑤 )  →  0  ≤  𝑤 )  | 
						
						
							| 44 | 
							
								
							 | 
							elxrge0 | 
							⊢ ( 𝑤  ∈  ( 0 [,] +∞ )  ↔  ( 𝑤  ∈  ℝ*  ∧  0  ≤  𝑤 ) )  | 
						
						
							| 45 | 
							
								42 43 44
							 | 
							sylanbrc | 
							⊢ ( ( ( ( 𝐴  ⊆  ( 0 [,] +∞ )  ∧  𝑤  ∈  ℝ* )  ∧  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑤  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  ∧  0  ≤  𝑤 )  →  𝑤  ∈  ( 0 [,] +∞ ) )  | 
						
						
							| 46 | 
							
								15
							 | 
							a1i | 
							⊢ ( 𝐴  ⊆  ( 0 [,] +∞ )  →  ( ∀ 𝑦  ∈  ℝ* ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 )  →  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							anim2d | 
							⊢ ( 𝐴  ⊆  ( 0 [,] +∞ )  →  ( ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑤  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) )  →  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑤  ∧  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							adantr | 
							⊢ ( ( 𝐴  ⊆  ( 0 [,] +∞ )  ∧  𝑤  ∈  ℝ* )  →  ( ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑤  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) )  →  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑤  ∧  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							imp | 
							⊢ ( ( ( 𝐴  ⊆  ( 0 [,] +∞ )  ∧  𝑤  ∈  ℝ* )  ∧  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑤  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  →  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑤  ∧  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							adantr | 
							⊢ ( ( ( ( 𝐴  ⊆  ( 0 [,] +∞ )  ∧  𝑤  ∈  ℝ* )  ∧  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑤  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  ∧  0  ≤  𝑤 )  →  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑤  ∧  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  | 
						
						
							| 51 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑥  =  𝑤  →  ( 𝑦  <  𝑥  ↔  𝑦  <  𝑤 ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							notbid | 
							⊢ ( 𝑥  =  𝑤  →  ( ¬  𝑦  <  𝑥  ↔  ¬  𝑦  <  𝑤 ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							ralbidv | 
							⊢ ( 𝑥  =  𝑤  →  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑥  ↔  ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑤 ) )  | 
						
						
							| 54 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑥  =  𝑤  →  ( 𝑥  <  𝑦  ↔  𝑤  <  𝑦 ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							imbi1d | 
							⊢ ( 𝑥  =  𝑤  →  ( ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 )  ↔  ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							ralbidv | 
							⊢ ( 𝑥  =  𝑤  →  ( ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 )  ↔  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  | 
						
						
							| 57 | 
							
								53 56
							 | 
							anbi12d | 
							⊢ ( 𝑥  =  𝑤  →  ( ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) )  ↔  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑤  ∧  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							rspcev | 
							⊢ ( ( 𝑤  ∈  ( 0 [,] +∞ )  ∧  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑤  ∧  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  →  ∃ 𝑥  ∈  ( 0 [,] +∞ ) ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  | 
						
						
							| 59 | 
							
								45 50 58
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝐴  ⊆  ( 0 [,] +∞ )  ∧  𝑤  ∈  ℝ* )  ∧  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑤  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  ∧  0  ≤  𝑤 )  →  ∃ 𝑥  ∈  ( 0 [,] +∞ ) ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  | 
						
						
							| 60 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝐴  ⊆  ( 0 [,] +∞ )  ∧  𝑤  ∈  ℝ* )  ∧  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑤  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  →  𝑤  ∈  ℝ* )  | 
						
						
							| 61 | 
							
								2
							 | 
							a1i | 
							⊢ ( ( ( 𝐴  ⊆  ( 0 [,] +∞ )  ∧  𝑤  ∈  ℝ* )  ∧  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑤  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  →  0  ∈  ℝ* )  | 
						
						
							| 62 | 
							
								
							 | 
							xrletri | 
							⊢ ( ( 𝑤  ∈  ℝ*  ∧  0  ∈  ℝ* )  →  ( 𝑤  ≤  0  ∨  0  ≤  𝑤 ) )  | 
						
						
							| 63 | 
							
								60 61 62
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐴  ⊆  ( 0 [,] +∞ )  ∧  𝑤  ∈  ℝ* )  ∧  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑤  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  →  ( 𝑤  ≤  0  ∨  0  ≤  𝑤 ) )  | 
						
						
							| 64 | 
							
								41 59 63
							 | 
							mpjaodan | 
							⊢ ( ( ( 𝐴  ⊆  ( 0 [,] +∞ )  ∧  𝑤  ∈  ℝ* )  ∧  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑤  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  →  ∃ 𝑥  ∈  ( 0 [,] +∞ ) ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  | 
						
						
							| 65 | 
							
								
							 | 
							sstr | 
							⊢ ( ( 𝐴  ⊆  ( 0 [,] +∞ )  ∧  ( 0 [,] +∞ )  ⊆  ℝ* )  →  𝐴  ⊆  ℝ* )  | 
						
						
							| 66 | 
							
								13 65
							 | 
							mpan2 | 
							⊢ ( 𝐴  ⊆  ( 0 [,] +∞ )  →  𝐴  ⊆  ℝ* )  | 
						
						
							| 67 | 
							
								
							 | 
							xrinfmss | 
							⊢ ( 𝐴  ⊆  ℝ*  →  ∃ 𝑤  ∈  ℝ* ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑤  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  | 
						
						
							| 68 | 
							
								66 67
							 | 
							syl | 
							⊢ ( 𝐴  ⊆  ( 0 [,] +∞ )  →  ∃ 𝑤  ∈  ℝ* ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑤  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑤  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  | 
						
						
							| 69 | 
							
								64 68
							 | 
							r19.29a | 
							⊢ ( 𝐴  ⊆  ( 0 [,] +∞ )  →  ∃ 𝑥  ∈  ( 0 [,] +∞ ) ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) )  |