| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							xrge0infssd.1 | 
							⊢ ( 𝜑  →  𝐶  ⊆  𝐵 )  | 
						
						
							| 2 | 
							
								
							 | 
							xrge0infssd.2 | 
							⊢ ( 𝜑  →  𝐵  ⊆  ( 0 [,] +∞ ) )  | 
						
						
							| 3 | 
							
								
							 | 
							iccssxr | 
							⊢ ( 0 [,] +∞ )  ⊆  ℝ*  | 
						
						
							| 4 | 
							
								
							 | 
							xrltso | 
							⊢  <   Or  ℝ*  | 
						
						
							| 5 | 
							
								
							 | 
							soss | 
							⊢ ( ( 0 [,] +∞ )  ⊆  ℝ*  →  (  <   Or  ℝ*  →   <   Or  ( 0 [,] +∞ ) ) )  | 
						
						
							| 6 | 
							
								3 4 5
							 | 
							mp2 | 
							⊢  <   Or  ( 0 [,] +∞ )  | 
						
						
							| 7 | 
							
								6
							 | 
							a1i | 
							⊢ ( 𝜑  →   <   Or  ( 0 [,] +∞ ) )  | 
						
						
							| 8 | 
							
								
							 | 
							xrge0infss | 
							⊢ ( 𝐵  ⊆  ( 0 [,] +∞ )  →  ∃ 𝑥  ∈  ( 0 [,] +∞ ) ( ∀ 𝑦  ∈  𝐵 ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐵 𝑧  <  𝑦 ) ) )  | 
						
						
							| 9 | 
							
								2 8
							 | 
							syl | 
							⊢ ( 𝜑  →  ∃ 𝑥  ∈  ( 0 [,] +∞ ) ( ∀ 𝑦  ∈  𝐵 ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐵 𝑧  <  𝑦 ) ) )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							infcl | 
							⊢ ( 𝜑  →  inf ( 𝐵 ,  ( 0 [,] +∞ ) ,   <  )  ∈  ( 0 [,] +∞ ) )  | 
						
						
							| 11 | 
							
								3 10
							 | 
							sselid | 
							⊢ ( 𝜑  →  inf ( 𝐵 ,  ( 0 [,] +∞ ) ,   <  )  ∈  ℝ* )  | 
						
						
							| 12 | 
							
								1 2
							 | 
							sstrd | 
							⊢ ( 𝜑  →  𝐶  ⊆  ( 0 [,] +∞ ) )  | 
						
						
							| 13 | 
							
								
							 | 
							xrge0infss | 
							⊢ ( 𝐶  ⊆  ( 0 [,] +∞ )  →  ∃ 𝑥  ∈  ( 0 [,] +∞ ) ( ∀ 𝑦  ∈  𝐶 ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐶 𝑧  <  𝑦 ) ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							syl | 
							⊢ ( 𝜑  →  ∃ 𝑥  ∈  ( 0 [,] +∞ ) ( ∀ 𝑦  ∈  𝐶 ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐶 𝑧  <  𝑦 ) ) )  | 
						
						
							| 15 | 
							
								7 14
							 | 
							infcl | 
							⊢ ( 𝜑  →  inf ( 𝐶 ,  ( 0 [,] +∞ ) ,   <  )  ∈  ( 0 [,] +∞ ) )  | 
						
						
							| 16 | 
							
								3 15
							 | 
							sselid | 
							⊢ ( 𝜑  →  inf ( 𝐶 ,  ( 0 [,] +∞ ) ,   <  )  ∈  ℝ* )  | 
						
						
							| 17 | 
							
								7 1 14 9
							 | 
							infssd | 
							⊢ ( 𝜑  →  ¬  inf ( 𝐶 ,  ( 0 [,] +∞ ) ,   <  )  <  inf ( 𝐵 ,  ( 0 [,] +∞ ) ,   <  ) )  | 
						
						
							| 18 | 
							
								11 16 17
							 | 
							xrnltled | 
							⊢ ( 𝜑  →  inf ( 𝐵 ,  ( 0 [,] +∞ ) ,   <  )  ≤  inf ( 𝐶 ,  ( 0 [,] +∞ ) ,   <  ) )  |