Description: The "less than or equal to" relation in the extended real numbers. (Contributed by Thierry Arnoux, 14-Mar-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | xrge0le | ⊢ ≤ = ( le ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex | ⊢ ( 0 [,] +∞ ) ∈ V | |
2 | eqid | ⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) | |
3 | xrsle | ⊢ ≤ = ( le ‘ ℝ*𝑠 ) | |
4 | 2 3 | ressle | ⊢ ( ( 0 [,] +∞ ) ∈ V → ≤ = ( le ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) ) |
5 | 1 4 | ax-mp | ⊢ ≤ = ( le ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |