Metamath Proof Explorer


Theorem xrge0mulc1cn

Description: The operation multiplying a nonnegative real numbers by a nonnegative constant is continuous. (Contributed by Thierry Arnoux, 6-Jul-2017)

Ref Expression
Hypotheses xrge0mulc1cn.k 𝐽 = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) )
xrge0mulc1cn.f 𝐹 = ( 𝑥 ∈ ( 0 [,] +∞ ) ↦ ( 𝑥 ·e 𝐶 ) )
xrge0mulc1cn.c ( 𝜑𝐶 ∈ ( 0 [,) +∞ ) )
Assertion xrge0mulc1cn ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐽 ) )

Proof

Step Hyp Ref Expression
1 xrge0mulc1cn.k 𝐽 = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) )
2 xrge0mulc1cn.f 𝐹 = ( 𝑥 ∈ ( 0 [,] +∞ ) ↦ ( 𝑥 ·e 𝐶 ) )
3 xrge0mulc1cn.c ( 𝜑𝐶 ∈ ( 0 [,) +∞ ) )
4 letopon ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* )
5 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
6 resttopon ( ( ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) )
7 4 5 6 mp2an ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ ( TopOn ‘ ( 0 [,] +∞ ) )
8 1 7 eqeltri 𝐽 ∈ ( TopOn ‘ ( 0 [,] +∞ ) )
9 8 a1i ( 𝐶 = 0 → 𝐽 ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) )
10 0e0iccpnf 0 ∈ ( 0 [,] +∞ )
11 10 a1i ( 𝐶 = 0 → 0 ∈ ( 0 [,] +∞ ) )
12 simpl ( ( 𝐶 = 0 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → 𝐶 = 0 )
13 12 oveq2d ( ( 𝐶 = 0 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → ( 𝑥 ·e 𝐶 ) = ( 𝑥 ·e 0 ) )
14 simpr ( ( 𝐶 = 0 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → 𝑥 ∈ ( 0 [,] +∞ ) )
15 5 14 sselid ( ( 𝐶 = 0 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → 𝑥 ∈ ℝ* )
16 xmul01 ( 𝑥 ∈ ℝ* → ( 𝑥 ·e 0 ) = 0 )
17 15 16 syl ( ( 𝐶 = 0 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → ( 𝑥 ·e 0 ) = 0 )
18 13 17 eqtrd ( ( 𝐶 = 0 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → ( 𝑥 ·e 𝐶 ) = 0 )
19 18 mpteq2dva ( 𝐶 = 0 → ( 𝑥 ∈ ( 0 [,] +∞ ) ↦ ( 𝑥 ·e 𝐶 ) ) = ( 𝑥 ∈ ( 0 [,] +∞ ) ↦ 0 ) )
20 fconstmpt ( ( 0 [,] +∞ ) × { 0 } ) = ( 𝑥 ∈ ( 0 [,] +∞ ) ↦ 0 )
21 19 2 20 3eqtr4g ( 𝐶 = 0 → 𝐹 = ( ( 0 [,] +∞ ) × { 0 } ) )
22 c0ex 0 ∈ V
23 22 fconst2 ( 𝐹 : ( 0 [,] +∞ ) ⟶ { 0 } ↔ 𝐹 = ( ( 0 [,] +∞ ) × { 0 } ) )
24 21 23 sylibr ( 𝐶 = 0 → 𝐹 : ( 0 [,] +∞ ) ⟶ { 0 } )
25 cnconst ( ( ( 𝐽 ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) ∧ 𝐽 ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) ) ∧ ( 0 ∈ ( 0 [,] +∞ ) ∧ 𝐹 : ( 0 [,] +∞ ) ⟶ { 0 } ) ) → 𝐹 ∈ ( 𝐽 Cn 𝐽 ) )
26 9 9 11 24 25 syl22anc ( 𝐶 = 0 → 𝐹 ∈ ( 𝐽 Cn 𝐽 ) )
27 26 adantl ( ( 𝜑𝐶 = 0 ) → 𝐹 ∈ ( 𝐽 Cn 𝐽 ) )
28 eqid ( ordTop ‘ ≤ ) = ( ordTop ‘ ≤ )
29 oveq1 ( 𝑥 = 𝑦 → ( 𝑥 ·e 𝐶 ) = ( 𝑦 ·e 𝐶 ) )
30 29 cbvmptv ( 𝑥 ∈ ℝ* ↦ ( 𝑥 ·e 𝐶 ) ) = ( 𝑦 ∈ ℝ* ↦ ( 𝑦 ·e 𝐶 ) )
31 id ( 𝐶 ∈ ℝ+𝐶 ∈ ℝ+ )
32 28 30 31 xrmulc1cn ( 𝐶 ∈ ℝ+ → ( 𝑥 ∈ ℝ* ↦ ( 𝑥 ·e 𝐶 ) ) ∈ ( ( ordTop ‘ ≤ ) Cn ( ordTop ‘ ≤ ) ) )
33 letopuni * = ( ordTop ‘ ≤ )
34 33 cnrest ( ( ( 𝑥 ∈ ℝ* ↦ ( 𝑥 ·e 𝐶 ) ) ∈ ( ( ordTop ‘ ≤ ) Cn ( ordTop ‘ ≤ ) ) ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → ( ( 𝑥 ∈ ℝ* ↦ ( 𝑥 ·e 𝐶 ) ) ↾ ( 0 [,] +∞ ) ) ∈ ( ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) Cn ( ordTop ‘ ≤ ) ) )
35 32 5 34 sylancl ( 𝐶 ∈ ℝ+ → ( ( 𝑥 ∈ ℝ* ↦ ( 𝑥 ·e 𝐶 ) ) ↾ ( 0 [,] +∞ ) ) ∈ ( ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) Cn ( ordTop ‘ ≤ ) ) )
36 resmpt ( ( 0 [,] +∞ ) ⊆ ℝ* → ( ( 𝑥 ∈ ℝ* ↦ ( 𝑥 ·e 𝐶 ) ) ↾ ( 0 [,] +∞ ) ) = ( 𝑥 ∈ ( 0 [,] +∞ ) ↦ ( 𝑥 ·e 𝐶 ) ) )
37 5 36 ax-mp ( ( 𝑥 ∈ ℝ* ↦ ( 𝑥 ·e 𝐶 ) ) ↾ ( 0 [,] +∞ ) ) = ( 𝑥 ∈ ( 0 [,] +∞ ) ↦ ( 𝑥 ·e 𝐶 ) )
38 37 2 eqtr4i ( ( 𝑥 ∈ ℝ* ↦ ( 𝑥 ·e 𝐶 ) ) ↾ ( 0 [,] +∞ ) ) = 𝐹
39 1 eqcomi ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) = 𝐽
40 39 oveq1i ( ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) Cn ( ordTop ‘ ≤ ) ) = ( 𝐽 Cn ( ordTop ‘ ≤ ) )
41 35 38 40 3eltr3g ( 𝐶 ∈ ℝ+𝐹 ∈ ( 𝐽 Cn ( ordTop ‘ ≤ ) ) )
42 4 a1i ( 𝐶 ∈ ℝ+ → ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) )
43 simpr ( ( 𝐶 ∈ ℝ+𝑥 ∈ ( 0 [,] +∞ ) ) → 𝑥 ∈ ( 0 [,] +∞ ) )
44 ioorp ( 0 (,) +∞ ) = ℝ+
45 ioossicc ( 0 (,) +∞ ) ⊆ ( 0 [,] +∞ )
46 44 45 eqsstrri + ⊆ ( 0 [,] +∞ )
47 simpl ( ( 𝐶 ∈ ℝ+𝑥 ∈ ( 0 [,] +∞ ) ) → 𝐶 ∈ ℝ+ )
48 46 47 sselid ( ( 𝐶 ∈ ℝ+𝑥 ∈ ( 0 [,] +∞ ) ) → 𝐶 ∈ ( 0 [,] +∞ ) )
49 ge0xmulcl ( ( 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( 𝑥 ·e 𝐶 ) ∈ ( 0 [,] +∞ ) )
50 43 48 49 syl2anc ( ( 𝐶 ∈ ℝ+𝑥 ∈ ( 0 [,] +∞ ) ) → ( 𝑥 ·e 𝐶 ) ∈ ( 0 [,] +∞ ) )
51 50 2 fmptd ( 𝐶 ∈ ℝ+𝐹 : ( 0 [,] +∞ ) ⟶ ( 0 [,] +∞ ) )
52 51 frnd ( 𝐶 ∈ ℝ+ → ran 𝐹 ⊆ ( 0 [,] +∞ ) )
53 5 a1i ( 𝐶 ∈ ℝ+ → ( 0 [,] +∞ ) ⊆ ℝ* )
54 cnrest2 ( ( ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) ∧ ran 𝐹 ⊆ ( 0 [,] +∞ ) ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → ( 𝐹 ∈ ( 𝐽 Cn ( ordTop ‘ ≤ ) ) ↔ 𝐹 ∈ ( 𝐽 Cn ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ) ) )
55 42 52 53 54 syl3anc ( 𝐶 ∈ ℝ+ → ( 𝐹 ∈ ( 𝐽 Cn ( ordTop ‘ ≤ ) ) ↔ 𝐹 ∈ ( 𝐽 Cn ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ) ) )
56 41 55 mpbid ( 𝐶 ∈ ℝ+𝐹 ∈ ( 𝐽 Cn ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ) )
57 1 oveq2i ( 𝐽 Cn 𝐽 ) = ( 𝐽 Cn ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) )
58 56 57 eleqtrrdi ( 𝐶 ∈ ℝ+𝐹 ∈ ( 𝐽 Cn 𝐽 ) )
59 58 44 eleq2s ( 𝐶 ∈ ( 0 (,) +∞ ) → 𝐹 ∈ ( 𝐽 Cn 𝐽 ) )
60 59 adantl ( ( 𝜑𝐶 ∈ ( 0 (,) +∞ ) ) → 𝐹 ∈ ( 𝐽 Cn 𝐽 ) )
61 0xr 0 ∈ ℝ*
62 pnfxr +∞ ∈ ℝ*
63 0ltpnf 0 < +∞
64 elicoelioo ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 < +∞ ) → ( 𝐶 ∈ ( 0 [,) +∞ ) ↔ ( 𝐶 = 0 ∨ 𝐶 ∈ ( 0 (,) +∞ ) ) ) )
65 61 62 63 64 mp3an ( 𝐶 ∈ ( 0 [,) +∞ ) ↔ ( 𝐶 = 0 ∨ 𝐶 ∈ ( 0 (,) +∞ ) ) )
66 3 65 sylib ( 𝜑 → ( 𝐶 = 0 ∨ 𝐶 ∈ ( 0 (,) +∞ ) ) )
67 27 60 66 mpjaodan ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐽 ) )