Step |
Hyp |
Ref |
Expression |
1 |
|
xrge0mulc1cn.k |
⊢ 𝐽 = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) |
2 |
|
xrge0mulc1cn.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,] +∞ ) ↦ ( 𝑥 ·e 𝐶 ) ) |
3 |
|
xrge0mulc1cn.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 0 [,) +∞ ) ) |
4 |
|
letopon |
⊢ ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) |
5 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
6 |
|
resttopon |
⊢ ( ( ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) ) |
7 |
4 5 6
|
mp2an |
⊢ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) |
8 |
1 7
|
eqeltri |
⊢ 𝐽 ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) |
9 |
8
|
a1i |
⊢ ( 𝐶 = 0 → 𝐽 ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) ) |
10 |
|
0e0iccpnf |
⊢ 0 ∈ ( 0 [,] +∞ ) |
11 |
10
|
a1i |
⊢ ( 𝐶 = 0 → 0 ∈ ( 0 [,] +∞ ) ) |
12 |
|
simpl |
⊢ ( ( 𝐶 = 0 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → 𝐶 = 0 ) |
13 |
12
|
oveq2d |
⊢ ( ( 𝐶 = 0 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → ( 𝑥 ·e 𝐶 ) = ( 𝑥 ·e 0 ) ) |
14 |
|
simpr |
⊢ ( ( 𝐶 = 0 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → 𝑥 ∈ ( 0 [,] +∞ ) ) |
15 |
5 14
|
sselid |
⊢ ( ( 𝐶 = 0 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → 𝑥 ∈ ℝ* ) |
16 |
|
xmul01 |
⊢ ( 𝑥 ∈ ℝ* → ( 𝑥 ·e 0 ) = 0 ) |
17 |
15 16
|
syl |
⊢ ( ( 𝐶 = 0 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → ( 𝑥 ·e 0 ) = 0 ) |
18 |
13 17
|
eqtrd |
⊢ ( ( 𝐶 = 0 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → ( 𝑥 ·e 𝐶 ) = 0 ) |
19 |
18
|
mpteq2dva |
⊢ ( 𝐶 = 0 → ( 𝑥 ∈ ( 0 [,] +∞ ) ↦ ( 𝑥 ·e 𝐶 ) ) = ( 𝑥 ∈ ( 0 [,] +∞ ) ↦ 0 ) ) |
20 |
|
fconstmpt |
⊢ ( ( 0 [,] +∞ ) × { 0 } ) = ( 𝑥 ∈ ( 0 [,] +∞ ) ↦ 0 ) |
21 |
19 2 20
|
3eqtr4g |
⊢ ( 𝐶 = 0 → 𝐹 = ( ( 0 [,] +∞ ) × { 0 } ) ) |
22 |
|
c0ex |
⊢ 0 ∈ V |
23 |
22
|
fconst2 |
⊢ ( 𝐹 : ( 0 [,] +∞ ) ⟶ { 0 } ↔ 𝐹 = ( ( 0 [,] +∞ ) × { 0 } ) ) |
24 |
21 23
|
sylibr |
⊢ ( 𝐶 = 0 → 𝐹 : ( 0 [,] +∞ ) ⟶ { 0 } ) |
25 |
|
cnconst |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) ∧ 𝐽 ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) ) ∧ ( 0 ∈ ( 0 [,] +∞ ) ∧ 𝐹 : ( 0 [,] +∞ ) ⟶ { 0 } ) ) → 𝐹 ∈ ( 𝐽 Cn 𝐽 ) ) |
26 |
9 9 11 24 25
|
syl22anc |
⊢ ( 𝐶 = 0 → 𝐹 ∈ ( 𝐽 Cn 𝐽 ) ) |
27 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐶 = 0 ) → 𝐹 ∈ ( 𝐽 Cn 𝐽 ) ) |
28 |
|
eqid |
⊢ ( ordTop ‘ ≤ ) = ( ordTop ‘ ≤ ) |
29 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ·e 𝐶 ) = ( 𝑦 ·e 𝐶 ) ) |
30 |
29
|
cbvmptv |
⊢ ( 𝑥 ∈ ℝ* ↦ ( 𝑥 ·e 𝐶 ) ) = ( 𝑦 ∈ ℝ* ↦ ( 𝑦 ·e 𝐶 ) ) |
31 |
|
id |
⊢ ( 𝐶 ∈ ℝ+ → 𝐶 ∈ ℝ+ ) |
32 |
28 30 31
|
xrmulc1cn |
⊢ ( 𝐶 ∈ ℝ+ → ( 𝑥 ∈ ℝ* ↦ ( 𝑥 ·e 𝐶 ) ) ∈ ( ( ordTop ‘ ≤ ) Cn ( ordTop ‘ ≤ ) ) ) |
33 |
|
letopuni |
⊢ ℝ* = ∪ ( ordTop ‘ ≤ ) |
34 |
33
|
cnrest |
⊢ ( ( ( 𝑥 ∈ ℝ* ↦ ( 𝑥 ·e 𝐶 ) ) ∈ ( ( ordTop ‘ ≤ ) Cn ( ordTop ‘ ≤ ) ) ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → ( ( 𝑥 ∈ ℝ* ↦ ( 𝑥 ·e 𝐶 ) ) ↾ ( 0 [,] +∞ ) ) ∈ ( ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) Cn ( ordTop ‘ ≤ ) ) ) |
35 |
32 5 34
|
sylancl |
⊢ ( 𝐶 ∈ ℝ+ → ( ( 𝑥 ∈ ℝ* ↦ ( 𝑥 ·e 𝐶 ) ) ↾ ( 0 [,] +∞ ) ) ∈ ( ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) Cn ( ordTop ‘ ≤ ) ) ) |
36 |
|
resmpt |
⊢ ( ( 0 [,] +∞ ) ⊆ ℝ* → ( ( 𝑥 ∈ ℝ* ↦ ( 𝑥 ·e 𝐶 ) ) ↾ ( 0 [,] +∞ ) ) = ( 𝑥 ∈ ( 0 [,] +∞ ) ↦ ( 𝑥 ·e 𝐶 ) ) ) |
37 |
5 36
|
ax-mp |
⊢ ( ( 𝑥 ∈ ℝ* ↦ ( 𝑥 ·e 𝐶 ) ) ↾ ( 0 [,] +∞ ) ) = ( 𝑥 ∈ ( 0 [,] +∞ ) ↦ ( 𝑥 ·e 𝐶 ) ) |
38 |
37 2
|
eqtr4i |
⊢ ( ( 𝑥 ∈ ℝ* ↦ ( 𝑥 ·e 𝐶 ) ) ↾ ( 0 [,] +∞ ) ) = 𝐹 |
39 |
1
|
eqcomi |
⊢ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) = 𝐽 |
40 |
39
|
oveq1i |
⊢ ( ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) Cn ( ordTop ‘ ≤ ) ) = ( 𝐽 Cn ( ordTop ‘ ≤ ) ) |
41 |
35 38 40
|
3eltr3g |
⊢ ( 𝐶 ∈ ℝ+ → 𝐹 ∈ ( 𝐽 Cn ( ordTop ‘ ≤ ) ) ) |
42 |
4
|
a1i |
⊢ ( 𝐶 ∈ ℝ+ → ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) ) |
43 |
|
simpr |
⊢ ( ( 𝐶 ∈ ℝ+ ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → 𝑥 ∈ ( 0 [,] +∞ ) ) |
44 |
|
ioorp |
⊢ ( 0 (,) +∞ ) = ℝ+ |
45 |
|
ioossicc |
⊢ ( 0 (,) +∞ ) ⊆ ( 0 [,] +∞ ) |
46 |
44 45
|
eqsstrri |
⊢ ℝ+ ⊆ ( 0 [,] +∞ ) |
47 |
|
simpl |
⊢ ( ( 𝐶 ∈ ℝ+ ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → 𝐶 ∈ ℝ+ ) |
48 |
46 47
|
sselid |
⊢ ( ( 𝐶 ∈ ℝ+ ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
49 |
|
ge0xmulcl |
⊢ ( ( 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( 𝑥 ·e 𝐶 ) ∈ ( 0 [,] +∞ ) ) |
50 |
43 48 49
|
syl2anc |
⊢ ( ( 𝐶 ∈ ℝ+ ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → ( 𝑥 ·e 𝐶 ) ∈ ( 0 [,] +∞ ) ) |
51 |
50 2
|
fmptd |
⊢ ( 𝐶 ∈ ℝ+ → 𝐹 : ( 0 [,] +∞ ) ⟶ ( 0 [,] +∞ ) ) |
52 |
51
|
frnd |
⊢ ( 𝐶 ∈ ℝ+ → ran 𝐹 ⊆ ( 0 [,] +∞ ) ) |
53 |
5
|
a1i |
⊢ ( 𝐶 ∈ ℝ+ → ( 0 [,] +∞ ) ⊆ ℝ* ) |
54 |
|
cnrest2 |
⊢ ( ( ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) ∧ ran 𝐹 ⊆ ( 0 [,] +∞ ) ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → ( 𝐹 ∈ ( 𝐽 Cn ( ordTop ‘ ≤ ) ) ↔ 𝐹 ∈ ( 𝐽 Cn ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ) ) ) |
55 |
42 52 53 54
|
syl3anc |
⊢ ( 𝐶 ∈ ℝ+ → ( 𝐹 ∈ ( 𝐽 Cn ( ordTop ‘ ≤ ) ) ↔ 𝐹 ∈ ( 𝐽 Cn ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ) ) ) |
56 |
41 55
|
mpbid |
⊢ ( 𝐶 ∈ ℝ+ → 𝐹 ∈ ( 𝐽 Cn ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ) ) |
57 |
1
|
oveq2i |
⊢ ( 𝐽 Cn 𝐽 ) = ( 𝐽 Cn ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ) |
58 |
56 57
|
eleqtrrdi |
⊢ ( 𝐶 ∈ ℝ+ → 𝐹 ∈ ( 𝐽 Cn 𝐽 ) ) |
59 |
58 44
|
eleq2s |
⊢ ( 𝐶 ∈ ( 0 (,) +∞ ) → 𝐹 ∈ ( 𝐽 Cn 𝐽 ) ) |
60 |
59
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 0 (,) +∞ ) ) → 𝐹 ∈ ( 𝐽 Cn 𝐽 ) ) |
61 |
|
0xr |
⊢ 0 ∈ ℝ* |
62 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
63 |
|
0ltpnf |
⊢ 0 < +∞ |
64 |
|
elicoelioo |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 < +∞ ) → ( 𝐶 ∈ ( 0 [,) +∞ ) ↔ ( 𝐶 = 0 ∨ 𝐶 ∈ ( 0 (,) +∞ ) ) ) ) |
65 |
61 62 63 64
|
mp3an |
⊢ ( 𝐶 ∈ ( 0 [,) +∞ ) ↔ ( 𝐶 = 0 ∨ 𝐶 ∈ ( 0 (,) +∞ ) ) ) |
66 |
3 65
|
sylib |
⊢ ( 𝜑 → ( 𝐶 = 0 ∨ 𝐶 ∈ ( 0 (,) +∞ ) ) ) |
67 |
27 60 66
|
mpjaodan |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐽 ) ) |