Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) |
2 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
3 |
|
xrsbas |
⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) |
4 |
2 3
|
sseqtri |
⊢ ( 0 [,] +∞ ) ⊆ ( Base ‘ ℝ*𝑠 ) |
5 |
|
eqid |
⊢ ( .g ‘ ℝ*𝑠 ) = ( .g ‘ ℝ*𝑠 ) |
6 |
|
eqid |
⊢ ( invg ‘ ℝ*𝑠 ) = ( invg ‘ ℝ*𝑠 ) |
7 |
|
xrs0 |
⊢ 0 = ( 0g ‘ ℝ*𝑠 ) |
8 |
|
xrge00 |
⊢ 0 = ( 0g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
9 |
7 8
|
eqtr3i |
⊢ ( 0g ‘ ℝ*𝑠 ) = ( 0g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
10 |
1 4 5 6 9
|
ressmulgnn0 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → ( 𝐴 ( .g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) 𝐵 ) = ( 𝐴 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) |
11 |
|
nn0z |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ ) |
12 |
|
eliccxr |
⊢ ( 𝐵 ∈ ( 0 [,] +∞ ) → 𝐵 ∈ ℝ* ) |
13 |
|
xrsmulgzz |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝐴 ·e 𝐵 ) ) |
14 |
11 12 13
|
syl2an |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → ( 𝐴 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝐴 ·e 𝐵 ) ) |
15 |
10 14
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → ( 𝐴 ( .g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) 𝐵 ) = ( 𝐴 ·e 𝐵 ) ) |