Metamath Proof Explorer


Theorem xrge0nemnfd

Description: A nonnegative extended real is not minus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis xrge0nemnfd.1 ( 𝜑𝐴 ∈ ( 0 [,] +∞ ) )
Assertion xrge0nemnfd ( 𝜑𝐴 ≠ -∞ )

Proof

Step Hyp Ref Expression
1 xrge0nemnfd.1 ( 𝜑𝐴 ∈ ( 0 [,] +∞ ) )
2 mnfxr -∞ ∈ ℝ*
3 2 a1i ( 𝜑 → -∞ ∈ ℝ* )
4 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
5 4 1 sselid ( 𝜑𝐴 ∈ ℝ* )
6 0xr 0 ∈ ℝ*
7 6 a1i ( 𝜑 → 0 ∈ ℝ* )
8 mnflt0 -∞ < 0
9 8 a1i ( 𝜑 → -∞ < 0 )
10 pnfxr +∞ ∈ ℝ*
11 10 a1i ( 𝜑 → +∞ ∈ ℝ* )
12 iccgelb ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ ( 0 [,] +∞ ) ) → 0 ≤ 𝐴 )
13 7 11 1 12 syl3anc ( 𝜑 → 0 ≤ 𝐴 )
14 3 7 5 9 13 xrltletrd ( 𝜑 → -∞ < 𝐴 )
15 3 5 14 xrgtned ( 𝜑𝐴 ≠ -∞ )