Description: A nonnegative extended real is not equal to minus infinity. (Contributed by Thierry Arnoux, 9-Jun-2017) (Proof shortened by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrge0neqmnf | ⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) → 𝐴 ≠ -∞ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliccxr | ⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) → 𝐴 ∈ ℝ* ) | |
| 2 | 0xr | ⊢ 0 ∈ ℝ* | |
| 3 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 4 | iccgelb | ⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 ∈ ( 0 [,] +∞ ) ) → 0 ≤ 𝐴 ) | |
| 5 | 2 3 4 | mp3an12 | ⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) → 0 ≤ 𝐴 ) |
| 6 | ge0nemnf | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) → 𝐴 ≠ -∞ ) | |
| 7 | 1 5 6 | syl2anc | ⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) → 𝐴 ≠ -∞ ) |