Description: An extended real which is not a real is plus infinity. (Contributed by Thierry Arnoux, 16-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrge0nre | ⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ ¬ 𝐴 ∈ ℝ ) → 𝐴 = +∞ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliccxr | ⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) → 𝐴 ∈ ℝ* ) | |
| 2 | xrge0neqmnf | ⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) → 𝐴 ≠ -∞ ) | |
| 3 | xrnemnf | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ) | |
| 4 | 3 | biimpi | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) → ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ) |
| 5 | 1 2 4 | syl2anc | ⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) → ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ) |
| 6 | 5 | orcanai | ⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ ¬ 𝐴 ∈ ℝ ) → 𝐴 = +∞ ) |