Metamath Proof Explorer


Theorem xrge0nre

Description: An extended real which is not a real is plus infinity. (Contributed by Thierry Arnoux, 16-Oct-2017)

Ref Expression
Assertion xrge0nre ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ ¬ 𝐴 ∈ ℝ ) → 𝐴 = +∞ )

Proof

Step Hyp Ref Expression
1 eliccxr ( 𝐴 ∈ ( 0 [,] +∞ ) → 𝐴 ∈ ℝ* )
2 xrge0neqmnf ( 𝐴 ∈ ( 0 [,] +∞ ) → 𝐴 ≠ -∞ )
3 xrnemnf ( ( 𝐴 ∈ ℝ*𝐴 ≠ -∞ ) ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) )
4 3 biimpi ( ( 𝐴 ∈ ℝ*𝐴 ≠ -∞ ) → ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) )
5 1 2 4 syl2anc ( 𝐴 ∈ ( 0 [,] +∞ ) → ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) )
6 5 orcanai ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ ¬ 𝐴 ∈ ℝ ) → 𝐴 = +∞ )