Step |
Hyp |
Ref |
Expression |
1 |
|
xrs1mnd.1 |
⊢ 𝑅 = ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) |
2 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ) → 𝑥 ∈ ℝ* ) |
3 |
|
ge0nemnf |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ) → 𝑥 ≠ -∞ ) |
4 |
2 3
|
jca |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ) → ( 𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞ ) ) |
5 |
|
elxrge0 |
⊢ ( 𝑥 ∈ ( 0 [,] +∞ ) ↔ ( 𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ) ) |
6 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( ℝ* ∖ { -∞ } ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞ ) ) |
7 |
4 5 6
|
3imtr4i |
⊢ ( 𝑥 ∈ ( 0 [,] +∞ ) → 𝑥 ∈ ( ℝ* ∖ { -∞ } ) ) |
8 |
7
|
ssriv |
⊢ ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) |
9 |
|
0e0iccpnf |
⊢ 0 ∈ ( 0 [,] +∞ ) |
10 |
|
ge0xaddcl |
⊢ ( ( 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( 𝑥 +𝑒 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
11 |
10
|
rgen2 |
⊢ ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 +𝑒 𝑦 ) ∈ ( 0 [,] +∞ ) |
12 |
1
|
xrs1mnd |
⊢ 𝑅 ∈ Mnd |
13 |
|
difss |
⊢ ( ℝ* ∖ { -∞ } ) ⊆ ℝ* |
14 |
|
xrsbas |
⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) |
15 |
1 14
|
ressbas2 |
⊢ ( ( ℝ* ∖ { -∞ } ) ⊆ ℝ* → ( ℝ* ∖ { -∞ } ) = ( Base ‘ 𝑅 ) ) |
16 |
13 15
|
ax-mp |
⊢ ( ℝ* ∖ { -∞ } ) = ( Base ‘ 𝑅 ) |
17 |
1
|
xrs10 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
18 |
|
xrex |
⊢ ℝ* ∈ V |
19 |
18
|
difexi |
⊢ ( ℝ* ∖ { -∞ } ) ∈ V |
20 |
|
xrsadd |
⊢ +𝑒 = ( +g ‘ ℝ*𝑠 ) |
21 |
1 20
|
ressplusg |
⊢ ( ( ℝ* ∖ { -∞ } ) ∈ V → +𝑒 = ( +g ‘ 𝑅 ) ) |
22 |
19 21
|
ax-mp |
⊢ +𝑒 = ( +g ‘ 𝑅 ) |
23 |
16 17 22
|
issubm |
⊢ ( 𝑅 ∈ Mnd → ( ( 0 [,] +∞ ) ∈ ( SubMnd ‘ 𝑅 ) ↔ ( ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) ∧ 0 ∈ ( 0 [,] +∞ ) ∧ ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 +𝑒 𝑦 ) ∈ ( 0 [,] +∞ ) ) ) ) |
24 |
12 23
|
ax-mp |
⊢ ( ( 0 [,] +∞ ) ∈ ( SubMnd ‘ 𝑅 ) ↔ ( ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) ∧ 0 ∈ ( 0 [,] +∞ ) ∧ ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 +𝑒 𝑦 ) ∈ ( 0 [,] +∞ ) ) ) |
25 |
8 9 11 24
|
mpbir3an |
⊢ ( 0 [,] +∞ ) ∈ ( SubMnd ‘ 𝑅 ) |