| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xrs1mnd.1 | ⊢ 𝑅  =  ( ℝ*𝑠  ↾s  ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 2 |  | simpl | ⊢ ( ( 𝑥  ∈  ℝ*  ∧  0  ≤  𝑥 )  →  𝑥  ∈  ℝ* ) | 
						
							| 3 |  | ge0nemnf | ⊢ ( ( 𝑥  ∈  ℝ*  ∧  0  ≤  𝑥 )  →  𝑥  ≠  -∞ ) | 
						
							| 4 | 2 3 | jca | ⊢ ( ( 𝑥  ∈  ℝ*  ∧  0  ≤  𝑥 )  →  ( 𝑥  ∈  ℝ*  ∧  𝑥  ≠  -∞ ) ) | 
						
							| 5 |  | elxrge0 | ⊢ ( 𝑥  ∈  ( 0 [,] +∞ )  ↔  ( 𝑥  ∈  ℝ*  ∧  0  ≤  𝑥 ) ) | 
						
							| 6 |  | eldifsn | ⊢ ( 𝑥  ∈  ( ℝ*  ∖  { -∞ } )  ↔  ( 𝑥  ∈  ℝ*  ∧  𝑥  ≠  -∞ ) ) | 
						
							| 7 | 4 5 6 | 3imtr4i | ⊢ ( 𝑥  ∈  ( 0 [,] +∞ )  →  𝑥  ∈  ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 8 | 7 | ssriv | ⊢ ( 0 [,] +∞ )  ⊆  ( ℝ*  ∖  { -∞ } ) | 
						
							| 9 |  | 0e0iccpnf | ⊢ 0  ∈  ( 0 [,] +∞ ) | 
						
							| 10 |  | ge0xaddcl | ⊢ ( ( 𝑥  ∈  ( 0 [,] +∞ )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  →  ( 𝑥  +𝑒  𝑦 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 11 | 10 | rgen2 | ⊢ ∀ 𝑥  ∈  ( 0 [,] +∞ ) ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑥  +𝑒  𝑦 )  ∈  ( 0 [,] +∞ ) | 
						
							| 12 | 1 | xrs1mnd | ⊢ 𝑅  ∈  Mnd | 
						
							| 13 |  | difss | ⊢ ( ℝ*  ∖  { -∞ } )  ⊆  ℝ* | 
						
							| 14 |  | xrsbas | ⊢ ℝ*  =  ( Base ‘ ℝ*𝑠 ) | 
						
							| 15 | 1 14 | ressbas2 | ⊢ ( ( ℝ*  ∖  { -∞ } )  ⊆  ℝ*  →  ( ℝ*  ∖  { -∞ } )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 16 | 13 15 | ax-mp | ⊢ ( ℝ*  ∖  { -∞ } )  =  ( Base ‘ 𝑅 ) | 
						
							| 17 | 1 | xrs10 | ⊢ 0  =  ( 0g ‘ 𝑅 ) | 
						
							| 18 |  | xrex | ⊢ ℝ*  ∈  V | 
						
							| 19 | 18 | difexi | ⊢ ( ℝ*  ∖  { -∞ } )  ∈  V | 
						
							| 20 |  | xrsadd | ⊢  +𝑒   =  ( +g ‘ ℝ*𝑠 ) | 
						
							| 21 | 1 20 | ressplusg | ⊢ ( ( ℝ*  ∖  { -∞ } )  ∈  V  →   +𝑒   =  ( +g ‘ 𝑅 ) ) | 
						
							| 22 | 19 21 | ax-mp | ⊢  +𝑒   =  ( +g ‘ 𝑅 ) | 
						
							| 23 | 16 17 22 | issubm | ⊢ ( 𝑅  ∈  Mnd  →  ( ( 0 [,] +∞ )  ∈  ( SubMnd ‘ 𝑅 )  ↔  ( ( 0 [,] +∞ )  ⊆  ( ℝ*  ∖  { -∞ } )  ∧  0  ∈  ( 0 [,] +∞ )  ∧  ∀ 𝑥  ∈  ( 0 [,] +∞ ) ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑥  +𝑒  𝑦 )  ∈  ( 0 [,] +∞ ) ) ) ) | 
						
							| 24 | 12 23 | ax-mp | ⊢ ( ( 0 [,] +∞ )  ∈  ( SubMnd ‘ 𝑅 )  ↔  ( ( 0 [,] +∞ )  ⊆  ( ℝ*  ∖  { -∞ } )  ∧  0  ∈  ( 0 [,] +∞ )  ∧  ∀ 𝑥  ∈  ( 0 [,] +∞ ) ∀ 𝑦  ∈  ( 0 [,] +∞ ) ( 𝑥  +𝑒  𝑦 )  ∈  ( 0 [,] +∞ ) ) ) | 
						
							| 25 | 8 9 11 24 | mpbir3an | ⊢ ( 0 [,] +∞ )  ∈  ( SubMnd ‘ 𝑅 ) |