| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝑥  =  0  ↔  𝑦  =  0 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  𝑦  →  ( log ‘ 𝑥 )  =  ( log ‘ 𝑦 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							negeqd | 
							⊢ ( 𝑥  =  𝑦  →  - ( log ‘ 𝑥 )  =  - ( log ‘ 𝑦 ) )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							ifbieq2d | 
							⊢ ( 𝑥  =  𝑦  →  if ( 𝑥  =  0 ,  +∞ ,  - ( log ‘ 𝑥 ) )  =  if ( 𝑦  =  0 ,  +∞ ,  - ( log ‘ 𝑦 ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							cbvmptv | 
							⊢ ( 𝑥  ∈  ( 0 [,] 1 )  ↦  if ( 𝑥  =  0 ,  +∞ ,  - ( log ‘ 𝑥 ) ) )  =  ( 𝑦  ∈  ( 0 [,] 1 )  ↦  if ( 𝑦  =  0 ,  +∞ ,  - ( log ‘ 𝑦 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							xrge0topn | 
							⊢ ( TopOpen ‘ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) )  =  ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,] +∞ ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							xrge0iifmhm | 
							⊢ ( 𝑥  ∈  ( 0 [,] 1 )  ↦  if ( 𝑥  =  0 ,  +∞ ,  - ( log ‘ 𝑥 ) ) )  ∈  ( ( ( mulGrp ‘ ℂfld )  ↾s  ( 0 [,] 1 ) )  MndHom  ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) )  | 
						
						
							| 8 | 
							
								5 6
							 | 
							xrge0iifhmeo | 
							⊢ ( 𝑥  ∈  ( 0 [,] 1 )  ↦  if ( 𝑥  =  0 ,  +∞ ,  - ( log ‘ 𝑥 ) ) )  ∈  ( II Homeo ( TopOpen ‘ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							cnfldex | 
							⊢ ℂfld  ∈  V  | 
						
						
							| 10 | 
							
								
							 | 
							ovex | 
							⊢ ( 0 [,] 1 )  ∈  V  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ( ℂfld  ↾s  ( 0 [,] 1 ) )  =  ( ℂfld  ↾s  ( 0 [,] 1 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							⊢ ( mulGrp ‘ ℂfld )  =  ( mulGrp ‘ ℂfld )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							mgpress | 
							⊢ ( ( ℂfld  ∈  V  ∧  ( 0 [,] 1 )  ∈  V )  →  ( ( mulGrp ‘ ℂfld )  ↾s  ( 0 [,] 1 ) )  =  ( mulGrp ‘ ( ℂfld  ↾s  ( 0 [,] 1 ) ) ) )  | 
						
						
							| 14 | 
							
								9 10 13
							 | 
							mp2an | 
							⊢ ( ( mulGrp ‘ ℂfld )  ↾s  ( 0 [,] 1 ) )  =  ( mulGrp ‘ ( ℂfld  ↾s  ( 0 [,] 1 ) ) )  | 
						
						
							| 15 | 
							
								11
							 | 
							dfii4 | 
							⊢ II  =  ( TopOpen ‘ ( ℂfld  ↾s  ( 0 [,] 1 ) ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							mgptopn | 
							⊢ II  =  ( TopOpen ‘ ( ( mulGrp ‘ ℂfld )  ↾s  ( 0 [,] 1 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							oveq1i | 
							⊢ ( II Homeo ( TopOpen ‘ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) ) )  =  ( ( TopOpen ‘ ( ( mulGrp ‘ ℂfld )  ↾s  ( 0 [,] 1 ) ) ) Homeo ( TopOpen ‘ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) ) )  | 
						
						
							| 18 | 
							
								8 17
							 | 
							eleqtri | 
							⊢ ( 𝑥  ∈  ( 0 [,] 1 )  ↦  if ( 𝑥  =  0 ,  +∞ ,  - ( log ‘ 𝑥 ) ) )  ∈  ( ( TopOpen ‘ ( ( mulGrp ‘ ℂfld )  ↾s  ( 0 [,] 1 ) ) ) Homeo ( TopOpen ‘ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							⊢ ( ( mulGrp ‘ ℂfld )  ↾s  ( 0 [,] 1 ) )  =  ( ( mulGrp ‘ ℂfld )  ↾s  ( 0 [,] 1 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							iistmd | 
							⊢ ( ( mulGrp ‘ ℂfld )  ↾s  ( 0 [,] 1 ) )  ∈  TopMnd  | 
						
						
							| 21 | 
							
								
							 | 
							xrge0tps | 
							⊢ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) )  ∈  TopSp  | 
						
						
							| 22 | 
							
								7 18 20 21
							 | 
							mhmhmeotmd | 
							⊢ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) )  ∈  TopMnd  |