| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							xrge0cmn | 
							⊢ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) )  ∈  CMnd  | 
						
						
							| 2 | 
							
								
							 | 
							cmnmnd | 
							⊢ ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) )  ∈  CMnd  →  ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) )  ∈  Mnd )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							ax-mp | 
							⊢ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) )  ∈  Mnd  | 
						
						
							| 4 | 
							
								
							 | 
							xrge0tps | 
							⊢ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) )  ∈  TopSp  | 
						
						
							| 5 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑦  =  𝑥  →  ( 𝑦  =  0  ↔  𝑥  =  0 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑦  =  𝑥  →  ( log ‘ 𝑦 )  =  ( log ‘ 𝑥 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							negeqd | 
							⊢ ( 𝑦  =  𝑥  →  - ( log ‘ 𝑦 )  =  - ( log ‘ 𝑥 ) )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							ifbieq2d | 
							⊢ ( 𝑦  =  𝑥  →  if ( 𝑦  =  0 ,  +∞ ,  - ( log ‘ 𝑦 ) )  =  if ( 𝑥  =  0 ,  +∞ ,  - ( log ‘ 𝑥 ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							cbvmptv | 
							⊢ ( 𝑦  ∈  ( 0 [,] 1 )  ↦  if ( 𝑦  =  0 ,  +∞ ,  - ( log ‘ 𝑦 ) ) )  =  ( 𝑥  ∈  ( 0 [,] 1 )  ↦  if ( 𝑥  =  0 ,  +∞ ,  - ( log ‘ 𝑥 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							⊢ ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,] +∞ ) )  =  ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,] +∞ ) )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ (  +𝑒   ↾  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) )  =  (  +𝑒   ↾  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) )  | 
						
						
							| 12 | 
							
								9 10 11
							 | 
							xrge0pluscn | 
							⊢ (  +𝑒   ↾  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) )  ∈  ( ( ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,] +∞ ) )  ×t  ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,] +∞ ) ) )  Cn  ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,] +∞ ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							xrsbas | 
							⊢ ℝ*  =  ( Base ‘ ℝ*𝑠 )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							⊢ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) )  =  ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) )  | 
						
						
							| 15 | 
							
								
							 | 
							xrsadd | 
							⊢  +𝑒   =  ( +g ‘ ℝ*𝑠 )  | 
						
						
							| 16 | 
							
								
							 | 
							xaddf | 
							⊢  +𝑒  : ( ℝ*  ×  ℝ* ) ⟶ ℝ*  | 
						
						
							| 17 | 
							
								
							 | 
							ffn | 
							⊢ (  +𝑒  : ( ℝ*  ×  ℝ* ) ⟶ ℝ*  →   +𝑒   Fn  ( ℝ*  ×  ℝ* ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							ax-mp | 
							⊢  +𝑒   Fn  ( ℝ*  ×  ℝ* )  | 
						
						
							| 19 | 
							
								
							 | 
							iccssxr | 
							⊢ ( 0 [,] +∞ )  ⊆  ℝ*  | 
						
						
							| 20 | 
							
								13 14 15 18 19
							 | 
							ressplusf | 
							⊢ ( +𝑓 ‘ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) )  =  (  +𝑒   ↾  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							eqcomi | 
							⊢ (  +𝑒   ↾  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) )  =  ( +𝑓 ‘ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							xrge0base | 
							⊢ ( 0 [,] +∞ )  =  ( Base ‘ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							ovex | 
							⊢ ( 0 [,] +∞ )  ∈  V  | 
						
						
							| 24 | 
							
								
							 | 
							xrstset | 
							⊢ ( ordTop ‘  ≤  )  =  ( TopSet ‘ ℝ*𝑠 )  | 
						
						
							| 25 | 
							
								14 24
							 | 
							resstset | 
							⊢ ( ( 0 [,] +∞ )  ∈  V  →  ( ordTop ‘  ≤  )  =  ( TopSet ‘ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) ) )  | 
						
						
							| 26 | 
							
								23 25
							 | 
							ax-mp | 
							⊢ ( ordTop ‘  ≤  )  =  ( TopSet ‘ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) )  | 
						
						
							| 27 | 
							
								22 26
							 | 
							topnval | 
							⊢ ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,] +∞ ) )  =  ( TopOpen ‘ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) )  | 
						
						
							| 28 | 
							
								21 27
							 | 
							istmd | 
							⊢ ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) )  ∈  TopMnd  ↔  ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) )  ∈  Mnd  ∧  ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) )  ∈  TopSp  ∧  (  +𝑒   ↾  ( ( 0 [,] +∞ )  ×  ( 0 [,] +∞ ) ) )  ∈  ( ( ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,] +∞ ) )  ×t  ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,] +∞ ) ) )  Cn  ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,] +∞ ) ) ) ) )  | 
						
						
							| 29 | 
							
								3 4 12 28
							 | 
							mpbir3an | 
							⊢ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) )  ∈  TopMnd  |