| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xrge0tsms2.g | ⊢ 𝐺  =  ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) | 
						
							| 2 |  | simpl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) )  →  𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 4 |  | eqid | ⊢ sup ( ran  ( 𝑥  ∈  ( 𝒫  𝐴  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝐴  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  ) | 
						
							| 5 | 1 2 3 4 | xrge0tsms | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) )  →  ( 𝐺  tsums  𝐹 )  =  { sup ( ran  ( 𝑥  ∈  ( 𝒫  𝐴  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  ) } ) | 
						
							| 6 |  | xrltso | ⊢  <   Or  ℝ* | 
						
							| 7 | 6 | supex | ⊢ sup ( ran  ( 𝑥  ∈  ( 𝒫  𝐴  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  )  ∈  V | 
						
							| 8 | 7 | ensn1 | ⊢ { sup ( ran  ( 𝑥  ∈  ( 𝒫  𝐴  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  ) }  ≈  1o | 
						
							| 9 | 5 8 | eqbrtrdi | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) )  →  ( 𝐺  tsums  𝐹 )  ≈  1o ) |