Metamath Proof Explorer


Theorem xrgepnfd

Description: An extended real greater than or equal to +oo is +oo (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xrgepnfd.1 ( 𝜑𝐴 ∈ ℝ* )
xrgepnfd.2 ( 𝜑 → +∞ ≤ 𝐴 )
Assertion xrgepnfd ( 𝜑𝐴 = +∞ )

Proof

Step Hyp Ref Expression
1 xrgepnfd.1 ( 𝜑𝐴 ∈ ℝ* )
2 xrgepnfd.2 ( 𝜑 → +∞ ≤ 𝐴 )
3 pnfxr +∞ ∈ ℝ*
4 3 a1i ( 𝜑 → +∞ ∈ ℝ* )
5 pnfge ( 𝐴 ∈ ℝ*𝐴 ≤ +∞ )
6 1 5 syl ( 𝜑𝐴 ≤ +∞ )
7 1 4 6 2 xrletrid ( 𝜑𝐴 = +∞ )