Metamath Proof Explorer


Theorem xrgtned

Description: 'Greater than' implies not equal. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xrgtned.1 ( 𝜑𝐴 ∈ ℝ* )
xrgtned.2 ( 𝜑𝐵 ∈ ℝ* )
xrgtned.3 ( 𝜑𝐴 < 𝐵 )
Assertion xrgtned ( 𝜑𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 xrgtned.1 ( 𝜑𝐴 ∈ ℝ* )
2 xrgtned.2 ( 𝜑𝐵 ∈ ℝ* )
3 xrgtned.3 ( 𝜑𝐴 < 𝐵 )
4 xrltne ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵 ) → 𝐵𝐴 )
5 1 2 3 4 syl3anc ( 𝜑𝐵𝐴 )