Metamath Proof Explorer
Description: 'Greater than' implies not equal. (Contributed by Glauco Siliprandi, 17-Aug-2020)
|
|
Ref |
Expression |
|
Hypotheses |
xrgtned.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
|
|
xrgtned.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
|
|
xrgtned.3 |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
|
Assertion |
xrgtned |
⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
xrgtned.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
2 |
|
xrgtned.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
3 |
|
xrgtned.3 |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
4 |
|
xrltne |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → 𝐵 ≠ 𝐴 ) |
5 |
1 2 3 4
|
syl3anc |
⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |