Metamath Proof Explorer
		
		
		
		Description:  'Greater than' implies not equal.  (Contributed by Glauco Siliprandi, 17-Aug-2020)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | xrgtned.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
					
						|  |  | xrgtned.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
					
						|  |  | xrgtned.3 | ⊢ ( 𝜑  →  𝐴  <  𝐵 ) | 
				
					|  | Assertion | xrgtned | ⊢  ( 𝜑  →  𝐵  ≠  𝐴 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xrgtned.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 2 |  | xrgtned.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 3 |  | xrgtned.3 | ⊢ ( 𝜑  →  𝐴  <  𝐵 ) | 
						
							| 4 |  | xrltne | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  →  𝐵  ≠  𝐴 ) | 
						
							| 5 | 1 2 3 4 | syl3anc | ⊢ ( 𝜑  →  𝐵  ≠  𝐴 ) |