Metamath Proof Explorer


Theorem xrgtnelicc

Description: A real number greater than the upper bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses xrgtnelicc.1 ( 𝜑𝐴 ∈ ℝ* )
xrgtnelicc.2 ( 𝜑𝐵 ∈ ℝ* )
xrgtnelicc.3 ( 𝜑𝐶 ∈ ℝ* )
xrgtnelicc.4 ( 𝜑𝐵 < 𝐶 )
Assertion xrgtnelicc ( 𝜑 → ¬ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) )

Proof

Step Hyp Ref Expression
1 xrgtnelicc.1 ( 𝜑𝐴 ∈ ℝ* )
2 xrgtnelicc.2 ( 𝜑𝐵 ∈ ℝ* )
3 xrgtnelicc.3 ( 𝜑𝐶 ∈ ℝ* )
4 xrgtnelicc.4 ( 𝜑𝐵 < 𝐶 )
5 xrltnle ( ( 𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( 𝐵 < 𝐶 ↔ ¬ 𝐶𝐵 ) )
6 2 3 5 syl2anc ( 𝜑 → ( 𝐵 < 𝐶 ↔ ¬ 𝐶𝐵 ) )
7 4 6 mpbid ( 𝜑 → ¬ 𝐶𝐵 )
8 7 intnand ( 𝜑 → ¬ ( 𝐴𝐶𝐶𝐵 ) )
9 elicc4 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴𝐶𝐶𝐵 ) ) )
10 1 2 3 9 syl3anc ( 𝜑 → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴𝐶𝐶𝐵 ) ) )
11 8 10 mtbird ( 𝜑 → ¬ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) )