| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrgtnelicc.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 2 |
|
xrgtnelicc.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 3 |
|
xrgtnelicc.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
| 4 |
|
xrgtnelicc.4 |
⊢ ( 𝜑 → 𝐵 < 𝐶 ) |
| 5 |
|
xrltnle |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 < 𝐶 ↔ ¬ 𝐶 ≤ 𝐵 ) ) |
| 6 |
2 3 5
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 < 𝐶 ↔ ¬ 𝐶 ≤ 𝐵 ) ) |
| 7 |
4 6
|
mpbid |
⊢ ( 𝜑 → ¬ 𝐶 ≤ 𝐵 ) |
| 8 |
7
|
intnand |
⊢ ( 𝜑 → ¬ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) |
| 9 |
|
elicc4 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
| 10 |
1 2 3 9
|
syl3anc |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
| 11 |
8 10
|
mtbird |
⊢ ( 𝜑 → ¬ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) |