Step |
Hyp |
Ref |
Expression |
1 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
2 |
|
1re |
⊢ 1 ∈ ℝ |
3 |
|
neg1lt0 |
⊢ - 1 < 0 |
4 |
|
0lt1 |
⊢ 0 < 1 |
5 |
|
0re |
⊢ 0 ∈ ℝ |
6 |
1 5 2
|
lttri |
⊢ ( ( - 1 < 0 ∧ 0 < 1 ) → - 1 < 1 ) |
7 |
3 4 6
|
mp2an |
⊢ - 1 < 1 |
8 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
9 |
|
eqid |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 1 ) + ( ( 1 − 𝑥 ) · - 1 ) ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 1 ) + ( ( 1 − 𝑥 ) · - 1 ) ) ) |
10 |
8 9
|
icchmeo |
⊢ ( ( - 1 ∈ ℝ ∧ 1 ∈ ℝ ∧ - 1 < 1 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 1 ) + ( ( 1 − 𝑥 ) · - 1 ) ) ) ∈ ( II Homeo ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) ) ) |
11 |
1 2 7 10
|
mp3an |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 1 ) + ( ( 1 − 𝑥 ) · - 1 ) ) ) ∈ ( II Homeo ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) ) |
12 |
|
hmphi |
⊢ ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 1 ) + ( ( 1 − 𝑥 ) · - 1 ) ) ) ∈ ( II Homeo ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) ) → II ≃ ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) ) |
13 |
11 12
|
ax-mp |
⊢ II ≃ ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) |
14 |
|
eqid |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) |
15 |
|
eqid |
⊢ ( 𝑦 ∈ ( - 1 [,] 1 ) ↦ if ( 0 ≤ 𝑦 , ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ 𝑦 ) , -𝑒 ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ - 𝑦 ) ) ) = ( 𝑦 ∈ ( - 1 [,] 1 ) ↦ if ( 0 ≤ 𝑦 , ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ 𝑦 ) , -𝑒 ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ - 𝑦 ) ) ) |
16 |
14 15 8
|
xrhmeo |
⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ↦ if ( 0 ≤ 𝑦 , ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ 𝑦 ) , -𝑒 ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ - 𝑦 ) ) ) Isom < , < ( ( - 1 [,] 1 ) , ℝ* ) ∧ ( 𝑦 ∈ ( - 1 [,] 1 ) ↦ if ( 0 ≤ 𝑦 , ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ 𝑦 ) , -𝑒 ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ - 𝑦 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) Homeo ( ordTop ‘ ≤ ) ) ) |
17 |
16
|
simpri |
⊢ ( 𝑦 ∈ ( - 1 [,] 1 ) ↦ if ( 0 ≤ 𝑦 , ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ 𝑦 ) , -𝑒 ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ - 𝑦 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) Homeo ( ordTop ‘ ≤ ) ) |
18 |
|
hmphi |
⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ↦ if ( 0 ≤ 𝑦 , ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ 𝑦 ) , -𝑒 ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ - 𝑦 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) Homeo ( ordTop ‘ ≤ ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) ≃ ( ordTop ‘ ≤ ) ) |
19 |
17 18
|
ax-mp |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) ≃ ( ordTop ‘ ≤ ) |
20 |
|
hmphtr |
⊢ ( ( II ≃ ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) ∧ ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) ≃ ( ordTop ‘ ≤ ) ) → II ≃ ( ordTop ‘ ≤ ) ) |
21 |
13 19 20
|
mp2an |
⊢ II ≃ ( ordTop ‘ ≤ ) |