| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
| 2 |
|
1re |
⊢ 1 ∈ ℝ |
| 3 |
|
neg1lt0 |
⊢ - 1 < 0 |
| 4 |
|
0lt1 |
⊢ 0 < 1 |
| 5 |
|
0re |
⊢ 0 ∈ ℝ |
| 6 |
1 5 2
|
lttri |
⊢ ( ( - 1 < 0 ∧ 0 < 1 ) → - 1 < 1 ) |
| 7 |
3 4 6
|
mp2an |
⊢ - 1 < 1 |
| 8 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 9 |
|
eqid |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 1 ) + ( ( 1 − 𝑥 ) · - 1 ) ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 1 ) + ( ( 1 − 𝑥 ) · - 1 ) ) ) |
| 10 |
8 9
|
icchmeo |
⊢ ( ( - 1 ∈ ℝ ∧ 1 ∈ ℝ ∧ - 1 < 1 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 1 ) + ( ( 1 − 𝑥 ) · - 1 ) ) ) ∈ ( II Homeo ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) ) ) |
| 11 |
1 2 7 10
|
mp3an |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 1 ) + ( ( 1 − 𝑥 ) · - 1 ) ) ) ∈ ( II Homeo ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) ) |
| 12 |
|
hmphi |
⊢ ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 1 ) + ( ( 1 − 𝑥 ) · - 1 ) ) ) ∈ ( II Homeo ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) ) → II ≃ ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) ) |
| 13 |
11 12
|
ax-mp |
⊢ II ≃ ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) |
| 14 |
|
eqid |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) |
| 15 |
|
eqid |
⊢ ( 𝑦 ∈ ( - 1 [,] 1 ) ↦ if ( 0 ≤ 𝑦 , ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ 𝑦 ) , -𝑒 ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ - 𝑦 ) ) ) = ( 𝑦 ∈ ( - 1 [,] 1 ) ↦ if ( 0 ≤ 𝑦 , ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ 𝑦 ) , -𝑒 ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ - 𝑦 ) ) ) |
| 16 |
14 15 8
|
xrhmeo |
⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ↦ if ( 0 ≤ 𝑦 , ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ 𝑦 ) , -𝑒 ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ - 𝑦 ) ) ) Isom < , < ( ( - 1 [,] 1 ) , ℝ* ) ∧ ( 𝑦 ∈ ( - 1 [,] 1 ) ↦ if ( 0 ≤ 𝑦 , ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ 𝑦 ) , -𝑒 ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ - 𝑦 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) Homeo ( ordTop ‘ ≤ ) ) ) |
| 17 |
16
|
simpri |
⊢ ( 𝑦 ∈ ( - 1 [,] 1 ) ↦ if ( 0 ≤ 𝑦 , ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ 𝑦 ) , -𝑒 ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ - 𝑦 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) Homeo ( ordTop ‘ ≤ ) ) |
| 18 |
|
hmphi |
⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ↦ if ( 0 ≤ 𝑦 , ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ 𝑦 ) , -𝑒 ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ - 𝑦 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) Homeo ( ordTop ‘ ≤ ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) ≃ ( ordTop ‘ ≤ ) ) |
| 19 |
17 18
|
ax-mp |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) ≃ ( ordTop ‘ ≤ ) |
| 20 |
|
hmphtr |
⊢ ( ( II ≃ ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) ∧ ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) ≃ ( ordTop ‘ ≤ ) ) → II ≃ ( ordTop ‘ ≤ ) ) |
| 21 |
13 19 20
|
mp2an |
⊢ II ≃ ( ordTop ‘ ≤ ) |