Metamath Proof Explorer


Theorem xrinf0

Description: The infimum of the empty set under the extended reals is positive infinity. (Contributed by Mario Carneiro, 21-Apr-2015) (Revised by AV, 5-Sep-2020)

Ref Expression
Assertion xrinf0 inf ( ∅ , ℝ* , < ) = +∞

Proof

Step Hyp Ref Expression
1 xrltso < Or ℝ*
2 1 a1i ( ⊤ → < Or ℝ* )
3 pnfxr +∞ ∈ ℝ*
4 3 a1i ( ⊤ → +∞ ∈ ℝ* )
5 noel ¬ 𝑦 ∈ ∅
6 5 pm2.21i ( 𝑦 ∈ ∅ → ¬ 𝑦 < +∞ )
7 6 adantl ( ( ⊤ ∧ 𝑦 ∈ ∅ ) → ¬ 𝑦 < +∞ )
8 pnfnlt ( 𝑦 ∈ ℝ* → ¬ +∞ < 𝑦 )
9 8 pm2.21d ( 𝑦 ∈ ℝ* → ( +∞ < 𝑦 → ∃ 𝑧 ∈ ∅ 𝑧 < 𝑦 ) )
10 9 imp ( ( 𝑦 ∈ ℝ* ∧ +∞ < 𝑦 ) → ∃ 𝑧 ∈ ∅ 𝑧 < 𝑦 )
11 10 adantl ( ( ⊤ ∧ ( 𝑦 ∈ ℝ* ∧ +∞ < 𝑦 ) ) → ∃ 𝑧 ∈ ∅ 𝑧 < 𝑦 )
12 2 4 7 11 eqinfd ( ⊤ → inf ( ∅ , ℝ* , < ) = +∞ )
13 12 mptru inf ( ∅ , ℝ* , < ) = +∞