Description: The infimum of the empty set under the extended reals is positive infinity. (Contributed by Mario Carneiro, 21-Apr-2015) (Revised by AV, 5-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrinf0 | ⊢ inf ( ∅ , ℝ* , < ) = +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltso | ⊢ < Or ℝ* | |
| 2 | 1 | a1i | ⊢ ( ⊤ → < Or ℝ* ) |
| 3 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 4 | 3 | a1i | ⊢ ( ⊤ → +∞ ∈ ℝ* ) |
| 5 | noel | ⊢ ¬ 𝑦 ∈ ∅ | |
| 6 | 5 | pm2.21i | ⊢ ( 𝑦 ∈ ∅ → ¬ 𝑦 < +∞ ) |
| 7 | 6 | adantl | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ∅ ) → ¬ 𝑦 < +∞ ) |
| 8 | pnfnlt | ⊢ ( 𝑦 ∈ ℝ* → ¬ +∞ < 𝑦 ) | |
| 9 | 8 | pm2.21d | ⊢ ( 𝑦 ∈ ℝ* → ( +∞ < 𝑦 → ∃ 𝑧 ∈ ∅ 𝑧 < 𝑦 ) ) |
| 10 | 9 | imp | ⊢ ( ( 𝑦 ∈ ℝ* ∧ +∞ < 𝑦 ) → ∃ 𝑧 ∈ ∅ 𝑧 < 𝑦 ) |
| 11 | 10 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑦 ∈ ℝ* ∧ +∞ < 𝑦 ) ) → ∃ 𝑧 ∈ ∅ 𝑧 < 𝑦 ) |
| 12 | 2 4 7 11 | eqinfd | ⊢ ( ⊤ → inf ( ∅ , ℝ* , < ) = +∞ ) |
| 13 | 12 | mptru | ⊢ inf ( ∅ , ℝ* , < ) = +∞ |