Step |
Hyp |
Ref |
Expression |
1 |
|
elun |
⊢ ( 𝑦 ∈ ( 𝐴 ∪ { +∞ } ) ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ { +∞ } ) ) |
2 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥 ) ) → ( 𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥 ) ) |
3 |
|
velsn |
⊢ ( 𝑦 ∈ { +∞ } ↔ 𝑦 = +∞ ) |
4 |
|
pnfnlt |
⊢ ( 𝑥 ∈ ℝ* → ¬ +∞ < 𝑥 ) |
5 |
|
breq1 |
⊢ ( 𝑦 = +∞ → ( 𝑦 < 𝑥 ↔ +∞ < 𝑥 ) ) |
6 |
5
|
notbid |
⊢ ( 𝑦 = +∞ → ( ¬ 𝑦 < 𝑥 ↔ ¬ +∞ < 𝑥 ) ) |
7 |
4 6
|
syl5ibrcom |
⊢ ( 𝑥 ∈ ℝ* → ( 𝑦 = +∞ → ¬ 𝑦 < 𝑥 ) ) |
8 |
3 7
|
syl5bi |
⊢ ( 𝑥 ∈ ℝ* → ( 𝑦 ∈ { +∞ } → ¬ 𝑦 < 𝑥 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥 ) ) → ( 𝑦 ∈ { +∞ } → ¬ 𝑦 < 𝑥 ) ) |
10 |
2 9
|
jaod |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥 ) ) → ( ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ { +∞ } ) → ¬ 𝑦 < 𝑥 ) ) |
11 |
1 10
|
syl5bi |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥 ) ) → ( 𝑦 ∈ ( 𝐴 ∪ { +∞ } ) → ¬ 𝑦 < 𝑥 ) ) |
12 |
11
|
ex |
⊢ ( 𝑥 ∈ ℝ* → ( ( 𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥 ) → ( 𝑦 ∈ ( 𝐴 ∪ { +∞ } ) → ¬ 𝑦 < 𝑥 ) ) ) |
13 |
12
|
ralimdv2 |
⊢ ( 𝑥 ∈ ℝ* → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 → ∀ 𝑦 ∈ ( 𝐴 ∪ { +∞ } ) ¬ 𝑦 < 𝑥 ) ) |
14 |
|
elun1 |
⊢ ( 𝑧 ∈ 𝐴 → 𝑧 ∈ ( 𝐴 ∪ { +∞ } ) ) |
15 |
14
|
anim1i |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑧 < 𝑦 ) → ( 𝑧 ∈ ( 𝐴 ∪ { +∞ } ) ∧ 𝑧 < 𝑦 ) ) |
16 |
15
|
reximi2 |
⊢ ( ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 → ∃ 𝑧 ∈ ( 𝐴 ∪ { +∞ } ) 𝑧 < 𝑦 ) |
17 |
16
|
imim2i |
⊢ ( ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) → ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ( 𝐴 ∪ { +∞ } ) 𝑧 < 𝑦 ) ) |
18 |
17
|
ralimi |
⊢ ( ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) → ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ( 𝐴 ∪ { +∞ } ) 𝑧 < 𝑦 ) ) |
19 |
13 18
|
anim12d1 |
⊢ ( 𝑥 ∈ ℝ* → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( ∀ 𝑦 ∈ ( 𝐴 ∪ { +∞ } ) ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ( 𝐴 ∪ { +∞ } ) 𝑧 < 𝑦 ) ) ) ) |
20 |
19
|
reximia |
⊢ ( ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ ( 𝐴 ∪ { +∞ } ) ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ( 𝐴 ∪ { +∞ } ) 𝑧 < 𝑦 ) ) ) |