| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xrinfmsslem | ⊢ ( ( 𝐴  ⊆  ℝ*  ∧  ( 𝐴  ⊆  ℝ  ∨  -∞  ∈  𝐴 ) )  →  ∃ 𝑥  ∈  ℝ* ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) ) | 
						
							| 2 |  | ssdifss | ⊢ ( 𝐴  ⊆  ℝ*  →  ( 𝐴  ∖  { +∞ } )  ⊆  ℝ* ) | 
						
							| 3 |  | ssxr | ⊢ ( ( 𝐴  ∖  { +∞ } )  ⊆  ℝ*  →  ( ( 𝐴  ∖  { +∞ } )  ⊆  ℝ  ∨  +∞  ∈  ( 𝐴  ∖  { +∞ } )  ∨  -∞  ∈  ( 𝐴  ∖  { +∞ } ) ) ) | 
						
							| 4 |  | 3orass | ⊢ ( ( ( 𝐴  ∖  { +∞ } )  ⊆  ℝ  ∨  +∞  ∈  ( 𝐴  ∖  { +∞ } )  ∨  -∞  ∈  ( 𝐴  ∖  { +∞ } ) )  ↔  ( ( 𝐴  ∖  { +∞ } )  ⊆  ℝ  ∨  ( +∞  ∈  ( 𝐴  ∖  { +∞ } )  ∨  -∞  ∈  ( 𝐴  ∖  { +∞ } ) ) ) ) | 
						
							| 5 |  | pnfex | ⊢ +∞  ∈  V | 
						
							| 6 | 5 | snid | ⊢ +∞  ∈  { +∞ } | 
						
							| 7 |  | elndif | ⊢ ( +∞  ∈  { +∞ }  →  ¬  +∞  ∈  ( 𝐴  ∖  { +∞ } ) ) | 
						
							| 8 |  | biorf | ⊢ ( ¬  +∞  ∈  ( 𝐴  ∖  { +∞ } )  →  ( -∞  ∈  ( 𝐴  ∖  { +∞ } )  ↔  ( +∞  ∈  ( 𝐴  ∖  { +∞ } )  ∨  -∞  ∈  ( 𝐴  ∖  { +∞ } ) ) ) ) | 
						
							| 9 | 6 7 8 | mp2b | ⊢ ( -∞  ∈  ( 𝐴  ∖  { +∞ } )  ↔  ( +∞  ∈  ( 𝐴  ∖  { +∞ } )  ∨  -∞  ∈  ( 𝐴  ∖  { +∞ } ) ) ) | 
						
							| 10 | 9 | orbi2i | ⊢ ( ( ( 𝐴  ∖  { +∞ } )  ⊆  ℝ  ∨  -∞  ∈  ( 𝐴  ∖  { +∞ } ) )  ↔  ( ( 𝐴  ∖  { +∞ } )  ⊆  ℝ  ∨  ( +∞  ∈  ( 𝐴  ∖  { +∞ } )  ∨  -∞  ∈  ( 𝐴  ∖  { +∞ } ) ) ) ) | 
						
							| 11 | 4 10 | bitr4i | ⊢ ( ( ( 𝐴  ∖  { +∞ } )  ⊆  ℝ  ∨  +∞  ∈  ( 𝐴  ∖  { +∞ } )  ∨  -∞  ∈  ( 𝐴  ∖  { +∞ } ) )  ↔  ( ( 𝐴  ∖  { +∞ } )  ⊆  ℝ  ∨  -∞  ∈  ( 𝐴  ∖  { +∞ } ) ) ) | 
						
							| 12 | 3 11 | sylib | ⊢ ( ( 𝐴  ∖  { +∞ } )  ⊆  ℝ*  →  ( ( 𝐴  ∖  { +∞ } )  ⊆  ℝ  ∨  -∞  ∈  ( 𝐴  ∖  { +∞ } ) ) ) | 
						
							| 13 |  | xrinfmsslem | ⊢ ( ( ( 𝐴  ∖  { +∞ } )  ⊆  ℝ*  ∧  ( ( 𝐴  ∖  { +∞ } )  ⊆  ℝ  ∨  -∞  ∈  ( 𝐴  ∖  { +∞ } ) ) )  →  ∃ 𝑥  ∈  ℝ* ( ∀ 𝑦  ∈  ( 𝐴  ∖  { +∞ } ) ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  ( 𝐴  ∖  { +∞ } ) 𝑧  <  𝑦 ) ) ) | 
						
							| 14 | 2 12 13 | syl2anc2 | ⊢ ( 𝐴  ⊆  ℝ*  →  ∃ 𝑥  ∈  ℝ* ( ∀ 𝑦  ∈  ( 𝐴  ∖  { +∞ } ) ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  ( 𝐴  ∖  { +∞ } ) 𝑧  <  𝑦 ) ) ) | 
						
							| 15 |  | xrinfmexpnf | ⊢ ( ∃ 𝑥  ∈  ℝ* ( ∀ 𝑦  ∈  ( 𝐴  ∖  { +∞ } ) ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  ( 𝐴  ∖  { +∞ } ) 𝑧  <  𝑦 ) )  →  ∃ 𝑥  ∈  ℝ* ( ∀ 𝑦  ∈  ( ( 𝐴  ∖  { +∞ } )  ∪  { +∞ } ) ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  ( ( 𝐴  ∖  { +∞ } )  ∪  { +∞ } ) 𝑧  <  𝑦 ) ) ) | 
						
							| 16 | 5 | snss | ⊢ ( +∞  ∈  𝐴  ↔  { +∞ }  ⊆  𝐴 ) | 
						
							| 17 |  | undif | ⊢ ( { +∞ }  ⊆  𝐴  ↔  ( { +∞ }  ∪  ( 𝐴  ∖  { +∞ } ) )  =  𝐴 ) | 
						
							| 18 |  | uncom | ⊢ ( { +∞ }  ∪  ( 𝐴  ∖  { +∞ } ) )  =  ( ( 𝐴  ∖  { +∞ } )  ∪  { +∞ } ) | 
						
							| 19 | 18 | eqeq1i | ⊢ ( ( { +∞ }  ∪  ( 𝐴  ∖  { +∞ } ) )  =  𝐴  ↔  ( ( 𝐴  ∖  { +∞ } )  ∪  { +∞ } )  =  𝐴 ) | 
						
							| 20 | 17 19 | bitri | ⊢ ( { +∞ }  ⊆  𝐴  ↔  ( ( 𝐴  ∖  { +∞ } )  ∪  { +∞ } )  =  𝐴 ) | 
						
							| 21 | 16 20 | bitri | ⊢ ( +∞  ∈  𝐴  ↔  ( ( 𝐴  ∖  { +∞ } )  ∪  { +∞ } )  =  𝐴 ) | 
						
							| 22 |  | raleq | ⊢ ( ( ( 𝐴  ∖  { +∞ } )  ∪  { +∞ } )  =  𝐴  →  ( ∀ 𝑦  ∈  ( ( 𝐴  ∖  { +∞ } )  ∪  { +∞ } ) ¬  𝑦  <  𝑥  ↔  ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑥 ) ) | 
						
							| 23 |  | rexeq | ⊢ ( ( ( 𝐴  ∖  { +∞ } )  ∪  { +∞ } )  =  𝐴  →  ( ∃ 𝑧  ∈  ( ( 𝐴  ∖  { +∞ } )  ∪  { +∞ } ) 𝑧  <  𝑦  ↔  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) | 
						
							| 24 | 23 | imbi2d | ⊢ ( ( ( 𝐴  ∖  { +∞ } )  ∪  { +∞ } )  =  𝐴  →  ( ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  ( ( 𝐴  ∖  { +∞ } )  ∪  { +∞ } ) 𝑧  <  𝑦 )  ↔  ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) ) | 
						
							| 25 | 24 | ralbidv | ⊢ ( ( ( 𝐴  ∖  { +∞ } )  ∪  { +∞ } )  =  𝐴  →  ( ∀ 𝑦  ∈  ℝ* ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  ( ( 𝐴  ∖  { +∞ } )  ∪  { +∞ } ) 𝑧  <  𝑦 )  ↔  ∀ 𝑦  ∈  ℝ* ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) ) | 
						
							| 26 | 22 25 | anbi12d | ⊢ ( ( ( 𝐴  ∖  { +∞ } )  ∪  { +∞ } )  =  𝐴  →  ( ( ∀ 𝑦  ∈  ( ( 𝐴  ∖  { +∞ } )  ∪  { +∞ } ) ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  ( ( 𝐴  ∖  { +∞ } )  ∪  { +∞ } ) 𝑧  <  𝑦 ) )  ↔  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) ) ) | 
						
							| 27 | 21 26 | sylbi | ⊢ ( +∞  ∈  𝐴  →  ( ( ∀ 𝑦  ∈  ( ( 𝐴  ∖  { +∞ } )  ∪  { +∞ } ) ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  ( ( 𝐴  ∖  { +∞ } )  ∪  { +∞ } ) 𝑧  <  𝑦 ) )  ↔  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) ) ) | 
						
							| 28 | 27 | rexbidv | ⊢ ( +∞  ∈  𝐴  →  ( ∃ 𝑥  ∈  ℝ* ( ∀ 𝑦  ∈  ( ( 𝐴  ∖  { +∞ } )  ∪  { +∞ } ) ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  ( ( 𝐴  ∖  { +∞ } )  ∪  { +∞ } ) 𝑧  <  𝑦 ) )  ↔  ∃ 𝑥  ∈  ℝ* ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) ) ) | 
						
							| 29 | 15 28 | imbitrid | ⊢ ( +∞  ∈  𝐴  →  ( ∃ 𝑥  ∈  ℝ* ( ∀ 𝑦  ∈  ( 𝐴  ∖  { +∞ } ) ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  ( 𝐴  ∖  { +∞ } ) 𝑧  <  𝑦 ) )  →  ∃ 𝑥  ∈  ℝ* ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) ) ) | 
						
							| 30 | 14 29 | mpan9 | ⊢ ( ( 𝐴  ⊆  ℝ*  ∧  +∞  ∈  𝐴 )  →  ∃ 𝑥  ∈  ℝ* ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) ) | 
						
							| 31 |  | ssxr | ⊢ ( 𝐴  ⊆  ℝ*  →  ( 𝐴  ⊆  ℝ  ∨  +∞  ∈  𝐴  ∨  -∞  ∈  𝐴 ) ) | 
						
							| 32 |  | df-3or | ⊢ ( ( 𝐴  ⊆  ℝ  ∨  +∞  ∈  𝐴  ∨  -∞  ∈  𝐴 )  ↔  ( ( 𝐴  ⊆  ℝ  ∨  +∞  ∈  𝐴 )  ∨  -∞  ∈  𝐴 ) ) | 
						
							| 33 |  | or32 | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∨  +∞  ∈  𝐴 )  ∨  -∞  ∈  𝐴 )  ↔  ( ( 𝐴  ⊆  ℝ  ∨  -∞  ∈  𝐴 )  ∨  +∞  ∈  𝐴 ) ) | 
						
							| 34 | 32 33 | bitri | ⊢ ( ( 𝐴  ⊆  ℝ  ∨  +∞  ∈  𝐴  ∨  -∞  ∈  𝐴 )  ↔  ( ( 𝐴  ⊆  ℝ  ∨  -∞  ∈  𝐴 )  ∨  +∞  ∈  𝐴 ) ) | 
						
							| 35 | 31 34 | sylib | ⊢ ( 𝐴  ⊆  ℝ*  →  ( ( 𝐴  ⊆  ℝ  ∨  -∞  ∈  𝐴 )  ∨  +∞  ∈  𝐴 ) ) | 
						
							| 36 | 1 30 35 | mpjaodan | ⊢ ( 𝐴  ⊆  ℝ*  →  ∃ 𝑥  ∈  ℝ* ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) ) |