Metamath Proof Explorer


Theorem xrinfmss2

Description: Any subset of extended reals has an infimum. (Contributed by Mario Carneiro, 16-Mar-2014)

Ref Expression
Assertion xrinfmss2 ( 𝐴 ⊆ ℝ* → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 xrinfmss ( 𝐴 ⊆ ℝ* → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )
2 vex 𝑥 ∈ V
3 vex 𝑦 ∈ V
4 2 3 brcnv ( 𝑥 < 𝑦𝑦 < 𝑥 )
5 4 notbii ( ¬ 𝑥 < 𝑦 ↔ ¬ 𝑦 < 𝑥 )
6 5 ralbii ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀ 𝑦𝐴 ¬ 𝑦 < 𝑥 )
7 3 2 brcnv ( 𝑦 < 𝑥𝑥 < 𝑦 )
8 vex 𝑧 ∈ V
9 3 8 brcnv ( 𝑦 < 𝑧𝑧 < 𝑦 )
10 9 rexbii ( ∃ 𝑧𝐴 𝑦 < 𝑧 ↔ ∃ 𝑧𝐴 𝑧 < 𝑦 )
11 7 10 imbi12i ( ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ↔ ( 𝑥 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) )
12 11 ralbii ( ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ↔ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) )
13 6 12 anbi12i ( ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ↔ ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )
14 13 rexbii ( ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ↔ ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )
15 1 14 sylibr ( 𝐴 ⊆ ℝ* → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )