| Step |
Hyp |
Ref |
Expression |
| 1 |
|
raleq |
⊢ ( 𝐴 = ∅ → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ↔ ∀ 𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ) ) |
| 2 |
|
rexeq |
⊢ ( 𝐴 = ∅ → ( ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ↔ ∃ 𝑧 ∈ ∅ 𝑧 < 𝑦 ) ) |
| 3 |
2
|
imbi2d |
⊢ ( 𝐴 = ∅ → ( ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ↔ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ∅ 𝑧 < 𝑦 ) ) ) |
| 4 |
3
|
ralbidv |
⊢ ( 𝐴 = ∅ → ( ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ↔ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ∅ 𝑧 < 𝑦 ) ) ) |
| 5 |
1 4
|
anbi12d |
⊢ ( 𝐴 = ∅ → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ∅ 𝑧 < 𝑦 ) ) ) ) |
| 6 |
5
|
rexbidv |
⊢ ( 𝐴 = ∅ → ( ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ∅ 𝑧 < 𝑦 ) ) ) ) |
| 7 |
|
infm3 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 8 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
| 9 |
8
|
anim1i |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) → ( 𝑥 ∈ ℝ* ∧ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) ) |
| 10 |
9
|
reximi2 |
⊢ ( ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 11 |
7 10
|
syl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 12 |
|
elxr |
⊢ ( 𝑦 ∈ ℝ* ↔ ( 𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞ ) ) |
| 13 |
|
simpr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) ∧ ( 𝑦 ∈ ℝ → ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) → ( 𝑦 ∈ ℝ → ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 14 |
|
ssel |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑧 ∈ 𝐴 → 𝑧 ∈ ℝ ) ) |
| 15 |
|
ltpnf |
⊢ ( 𝑧 ∈ ℝ → 𝑧 < +∞ ) |
| 16 |
14 15
|
syl6 |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑧 ∈ 𝐴 → 𝑧 < +∞ ) ) |
| 17 |
16
|
ancld |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑧 ∈ 𝐴 → ( 𝑧 ∈ 𝐴 ∧ 𝑧 < +∞ ) ) ) |
| 18 |
17
|
eximdv |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑧 𝑧 ∈ 𝐴 → ∃ 𝑧 ( 𝑧 ∈ 𝐴 ∧ 𝑧 < +∞ ) ) ) |
| 19 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝐴 ) |
| 20 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ 𝐴 𝑧 < +∞ ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐴 ∧ 𝑧 < +∞ ) ) |
| 21 |
18 19 20
|
3imtr4g |
⊢ ( 𝐴 ⊆ ℝ → ( 𝐴 ≠ ∅ → ∃ 𝑧 ∈ 𝐴 𝑧 < +∞ ) ) |
| 22 |
21
|
imp |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ∃ 𝑧 ∈ 𝐴 𝑧 < +∞ ) |
| 23 |
22
|
a1d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( 𝑥 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑧 < +∞ ) ) |
| 24 |
23
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) ∧ 𝑦 = +∞ ) → ( 𝑥 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑧 < +∞ ) ) |
| 25 |
|
breq2 |
⊢ ( 𝑦 = +∞ → ( 𝑥 < 𝑦 ↔ 𝑥 < +∞ ) ) |
| 26 |
|
breq2 |
⊢ ( 𝑦 = +∞ → ( 𝑧 < 𝑦 ↔ 𝑧 < +∞ ) ) |
| 27 |
26
|
rexbidv |
⊢ ( 𝑦 = +∞ → ( ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ↔ ∃ 𝑧 ∈ 𝐴 𝑧 < +∞ ) ) |
| 28 |
25 27
|
imbi12d |
⊢ ( 𝑦 = +∞ → ( ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ↔ ( 𝑥 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑧 < +∞ ) ) ) |
| 29 |
28
|
adantl |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) ∧ 𝑦 = +∞ ) → ( ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ↔ ( 𝑥 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑧 < +∞ ) ) ) |
| 30 |
24 29
|
mpbird |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) ∧ 𝑦 = +∞ ) → ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) |
| 31 |
30
|
ex |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) → ( 𝑦 = +∞ → ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 32 |
31
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) ∧ ( 𝑦 ∈ ℝ → ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) → ( 𝑦 = +∞ → ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 33 |
|
nltmnf |
⊢ ( 𝑥 ∈ ℝ* → ¬ 𝑥 < -∞ ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 = -∞ ) → ¬ 𝑥 < -∞ ) |
| 35 |
|
breq2 |
⊢ ( 𝑦 = -∞ → ( 𝑥 < 𝑦 ↔ 𝑥 < -∞ ) ) |
| 36 |
35
|
notbid |
⊢ ( 𝑦 = -∞ → ( ¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < -∞ ) ) |
| 37 |
36
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 = -∞ ) → ( ¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < -∞ ) ) |
| 38 |
34 37
|
mpbird |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 = -∞ ) → ¬ 𝑥 < 𝑦 ) |
| 39 |
38
|
pm2.21d |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 = -∞ ) → ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) |
| 40 |
39
|
ex |
⊢ ( 𝑥 ∈ ℝ* → ( 𝑦 = -∞ → ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 41 |
40
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) ∧ ( 𝑦 ∈ ℝ → ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) → ( 𝑦 = -∞ → ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 42 |
13 32 41
|
3jaod |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) ∧ ( 𝑦 ∈ ℝ → ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) → ( ( 𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞ ) → ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 43 |
12 42
|
biimtrid |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) ∧ ( 𝑦 ∈ ℝ → ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) → ( 𝑦 ∈ ℝ* → ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 44 |
43
|
ex |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) → ( ( 𝑦 ∈ ℝ → ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( 𝑦 ∈ ℝ* → ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) ) |
| 45 |
44
|
ralimdv2 |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) → ( ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) → ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 46 |
45
|
anim2d |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) ) |
| 47 |
46
|
reximdva |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) ) |
| 48 |
47
|
3adant3 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) ) |
| 49 |
11 48
|
mpd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 50 |
49
|
3expa |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 51 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| 52 |
|
rexnal |
⊢ ( ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 ≤ 𝑦 ↔ ¬ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| 53 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) |
| 54 |
|
letric |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) |
| 55 |
54
|
ancoms |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) |
| 56 |
55
|
ord |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ¬ 𝑥 ≤ 𝑦 → 𝑦 ≤ 𝑥 ) ) |
| 57 |
53 56
|
sylan |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ¬ 𝑥 ≤ 𝑦 → 𝑦 ≤ 𝑥 ) ) |
| 58 |
57
|
an32s |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( ¬ 𝑥 ≤ 𝑦 → 𝑦 ≤ 𝑥 ) ) |
| 59 |
58
|
reximdva |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 ≤ 𝑦 → ∃ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 60 |
52 59
|
biimtrrid |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( ¬ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∃ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 61 |
60
|
ralimdva |
⊢ ( 𝐴 ⊆ ℝ → ( ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 62 |
61
|
imp |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
| 63 |
51 62
|
sylan2br |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
| 64 |
|
breq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ≤ 𝑥 ↔ 𝑧 ≤ 𝑥 ) ) |
| 65 |
64
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 ) |
| 66 |
65
|
ralbii |
⊢ ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 ) |
| 67 |
63 66
|
sylib |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 ) |
| 68 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 69 |
|
ssel |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ ) ) |
| 70 |
|
rexr |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℝ* ) |
| 71 |
|
nltmnf |
⊢ ( 𝑦 ∈ ℝ* → ¬ 𝑦 < -∞ ) |
| 72 |
70 71
|
syl |
⊢ ( 𝑦 ∈ ℝ → ¬ 𝑦 < -∞ ) |
| 73 |
69 72
|
syl6 |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑦 ∈ 𝐴 → ¬ 𝑦 < -∞ ) ) |
| 74 |
73
|
ralrimiv |
⊢ ( 𝐴 ⊆ ℝ → ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < -∞ ) |
| 75 |
74
|
adantr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 ) → ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < -∞ ) |
| 76 |
|
peano2rem |
⊢ ( 𝑦 ∈ ℝ → ( 𝑦 − 1 ) ∈ ℝ ) |
| 77 |
|
breq2 |
⊢ ( 𝑥 = ( 𝑦 − 1 ) → ( 𝑧 ≤ 𝑥 ↔ 𝑧 ≤ ( 𝑦 − 1 ) ) ) |
| 78 |
77
|
rexbidv |
⊢ ( 𝑥 = ( 𝑦 − 1 ) → ( ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 ↔ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ ( 𝑦 − 1 ) ) ) |
| 79 |
78
|
rspcva |
⊢ ( ( ( 𝑦 − 1 ) ∈ ℝ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 ) → ∃ 𝑧 ∈ 𝐴 𝑧 ≤ ( 𝑦 − 1 ) ) |
| 80 |
79
|
adantrr |
⊢ ( ( ( 𝑦 − 1 ) ∈ ℝ ∧ ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 ∧ 𝐴 ⊆ ℝ ) ) → ∃ 𝑧 ∈ 𝐴 𝑧 ≤ ( 𝑦 − 1 ) ) |
| 81 |
80
|
ancoms |
⊢ ( ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑦 − 1 ) ∈ ℝ ) → ∃ 𝑧 ∈ 𝐴 𝑧 ≤ ( 𝑦 − 1 ) ) |
| 82 |
76 81
|
sylan2 |
⊢ ( ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑦 ∈ ℝ ) → ∃ 𝑧 ∈ 𝐴 𝑧 ≤ ( 𝑦 − 1 ) ) |
| 83 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ℝ ) |
| 84 |
|
ltm1 |
⊢ ( 𝑦 ∈ ℝ → ( 𝑦 − 1 ) < 𝑦 ) |
| 85 |
84
|
adantl |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑦 − 1 ) < 𝑦 ) |
| 86 |
76
|
ancri |
⊢ ( 𝑦 ∈ ℝ → ( ( 𝑦 − 1 ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) |
| 87 |
|
lelttr |
⊢ ( ( 𝑧 ∈ ℝ ∧ ( 𝑦 − 1 ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑧 ≤ ( 𝑦 − 1 ) ∧ ( 𝑦 − 1 ) < 𝑦 ) → 𝑧 < 𝑦 ) ) |
| 88 |
87
|
3expb |
⊢ ( ( 𝑧 ∈ ℝ ∧ ( ( 𝑦 − 1 ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( ( 𝑧 ≤ ( 𝑦 − 1 ) ∧ ( 𝑦 − 1 ) < 𝑦 ) → 𝑧 < 𝑦 ) ) |
| 89 |
86 88
|
sylan2 |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑧 ≤ ( 𝑦 − 1 ) ∧ ( 𝑦 − 1 ) < 𝑦 ) → 𝑧 < 𝑦 ) ) |
| 90 |
85 89
|
mpan2d |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ≤ ( 𝑦 − 1 ) → 𝑧 < 𝑦 ) ) |
| 91 |
83 90
|
sylan |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ≤ ( 𝑦 − 1 ) → 𝑧 < 𝑦 ) ) |
| 92 |
91
|
an32s |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑧 ≤ ( 𝑦 − 1 ) → 𝑧 < 𝑦 ) ) |
| 93 |
92
|
reximdva |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑧 ∈ 𝐴 𝑧 ≤ ( 𝑦 − 1 ) → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) |
| 94 |
93
|
adantll |
⊢ ( ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑧 ∈ 𝐴 𝑧 ≤ ( 𝑦 − 1 ) → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) |
| 95 |
82 94
|
mpd |
⊢ ( ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑦 ∈ ℝ ) → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) |
| 96 |
95
|
exp31 |
⊢ ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 → ( 𝐴 ⊆ ℝ → ( 𝑦 ∈ ℝ → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 97 |
96
|
a1dd |
⊢ ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 → ( 𝐴 ⊆ ℝ → ( -∞ < 𝑦 → ( 𝑦 ∈ ℝ → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) ) |
| 98 |
97
|
com4r |
⊢ ( 𝑦 ∈ ℝ → ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 → ( 𝐴 ⊆ ℝ → ( -∞ < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) ) |
| 99 |
|
0re |
⊢ 0 ∈ ℝ |
| 100 |
|
breq2 |
⊢ ( 𝑥 = 0 → ( 𝑧 ≤ 𝑥 ↔ 𝑧 ≤ 0 ) ) |
| 101 |
100
|
rexbidv |
⊢ ( 𝑥 = 0 → ( ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 ↔ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 0 ) ) |
| 102 |
101
|
rspcva |
⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 ) → ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 0 ) |
| 103 |
99 102
|
mpan |
⊢ ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 0 ) |
| 104 |
83 15
|
syl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑧 ∈ 𝐴 ) → 𝑧 < +∞ ) |
| 105 |
104
|
a1d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑧 ∈ 𝐴 ) → ( 𝑧 ≤ 0 → 𝑧 < +∞ ) ) |
| 106 |
105
|
reximdva |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 0 → ∃ 𝑧 ∈ 𝐴 𝑧 < +∞ ) ) |
| 107 |
103 106
|
mpan9 |
⊢ ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 ∧ 𝐴 ⊆ ℝ ) → ∃ 𝑧 ∈ 𝐴 𝑧 < +∞ ) |
| 108 |
107 27
|
imbitrrid |
⊢ ( 𝑦 = +∞ → ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 ∧ 𝐴 ⊆ ℝ ) → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) |
| 109 |
108
|
a1dd |
⊢ ( 𝑦 = +∞ → ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 ∧ 𝐴 ⊆ ℝ ) → ( -∞ < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 110 |
109
|
expd |
⊢ ( 𝑦 = +∞ → ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 → ( 𝐴 ⊆ ℝ → ( -∞ < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) ) |
| 111 |
|
xrltnr |
⊢ ( -∞ ∈ ℝ* → ¬ -∞ < -∞ ) |
| 112 |
68 111
|
ax-mp |
⊢ ¬ -∞ < -∞ |
| 113 |
|
breq2 |
⊢ ( 𝑦 = -∞ → ( -∞ < 𝑦 ↔ -∞ < -∞ ) ) |
| 114 |
112 113
|
mtbiri |
⊢ ( 𝑦 = -∞ → ¬ -∞ < 𝑦 ) |
| 115 |
114
|
pm2.21d |
⊢ ( 𝑦 = -∞ → ( -∞ < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) |
| 116 |
115
|
2a1d |
⊢ ( 𝑦 = -∞ → ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 → ( 𝐴 ⊆ ℝ → ( -∞ < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) ) |
| 117 |
98 110 116
|
3jaoi |
⊢ ( ( 𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞ ) → ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 → ( 𝐴 ⊆ ℝ → ( -∞ < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) ) |
| 118 |
12 117
|
sylbi |
⊢ ( 𝑦 ∈ ℝ* → ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 → ( 𝐴 ⊆ ℝ → ( -∞ < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) ) |
| 119 |
118
|
com13 |
⊢ ( 𝐴 ⊆ ℝ → ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 → ( 𝑦 ∈ ℝ* → ( -∞ < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) ) |
| 120 |
119
|
imp |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 ) → ( 𝑦 ∈ ℝ* → ( -∞ < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 121 |
120
|
ralrimiv |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 ) → ∀ 𝑦 ∈ ℝ* ( -∞ < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) |
| 122 |
75 121
|
jca |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 ) → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < -∞ ∧ ∀ 𝑦 ∈ ℝ* ( -∞ < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 123 |
|
breq2 |
⊢ ( 𝑥 = -∞ → ( 𝑦 < 𝑥 ↔ 𝑦 < -∞ ) ) |
| 124 |
123
|
notbid |
⊢ ( 𝑥 = -∞ → ( ¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < -∞ ) ) |
| 125 |
124
|
ralbidv |
⊢ ( 𝑥 = -∞ → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < -∞ ) ) |
| 126 |
|
breq1 |
⊢ ( 𝑥 = -∞ → ( 𝑥 < 𝑦 ↔ -∞ < 𝑦 ) ) |
| 127 |
126
|
imbi1d |
⊢ ( 𝑥 = -∞ → ( ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ↔ ( -∞ < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 128 |
127
|
ralbidv |
⊢ ( 𝑥 = -∞ → ( ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ↔ ∀ 𝑦 ∈ ℝ* ( -∞ < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 129 |
125 128
|
anbi12d |
⊢ ( 𝑥 = -∞ → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < -∞ ∧ ∀ 𝑦 ∈ ℝ* ( -∞ < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) ) |
| 130 |
129
|
rspcev |
⊢ ( ( -∞ ∈ ℝ* ∧ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < -∞ ∧ ∀ 𝑦 ∈ ℝ* ( -∞ < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 131 |
68 122 130
|
sylancr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 132 |
67 131
|
syldan |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 133 |
132
|
adantlr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 134 |
50 133
|
pm2.61dan |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 135 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 136 |
|
ral0 |
⊢ ∀ 𝑦 ∈ ∅ ¬ 𝑦 < +∞ |
| 137 |
|
pnfnlt |
⊢ ( 𝑦 ∈ ℝ* → ¬ +∞ < 𝑦 ) |
| 138 |
137
|
pm2.21d |
⊢ ( 𝑦 ∈ ℝ* → ( +∞ < 𝑦 → ∃ 𝑧 ∈ ∅ 𝑧 < 𝑦 ) ) |
| 139 |
138
|
rgen |
⊢ ∀ 𝑦 ∈ ℝ* ( +∞ < 𝑦 → ∃ 𝑧 ∈ ∅ 𝑧 < 𝑦 ) |
| 140 |
136 139
|
pm3.2i |
⊢ ( ∀ 𝑦 ∈ ∅ ¬ 𝑦 < +∞ ∧ ∀ 𝑦 ∈ ℝ* ( +∞ < 𝑦 → ∃ 𝑧 ∈ ∅ 𝑧 < 𝑦 ) ) |
| 141 |
|
breq2 |
⊢ ( 𝑥 = +∞ → ( 𝑦 < 𝑥 ↔ 𝑦 < +∞ ) ) |
| 142 |
141
|
notbid |
⊢ ( 𝑥 = +∞ → ( ¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < +∞ ) ) |
| 143 |
142
|
ralbidv |
⊢ ( 𝑥 = +∞ → ( ∀ 𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ↔ ∀ 𝑦 ∈ ∅ ¬ 𝑦 < +∞ ) ) |
| 144 |
|
breq1 |
⊢ ( 𝑥 = +∞ → ( 𝑥 < 𝑦 ↔ +∞ < 𝑦 ) ) |
| 145 |
144
|
imbi1d |
⊢ ( 𝑥 = +∞ → ( ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ∅ 𝑧 < 𝑦 ) ↔ ( +∞ < 𝑦 → ∃ 𝑧 ∈ ∅ 𝑧 < 𝑦 ) ) ) |
| 146 |
145
|
ralbidv |
⊢ ( 𝑥 = +∞ → ( ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ∅ 𝑧 < 𝑦 ) ↔ ∀ 𝑦 ∈ ℝ* ( +∞ < 𝑦 → ∃ 𝑧 ∈ ∅ 𝑧 < 𝑦 ) ) ) |
| 147 |
143 146
|
anbi12d |
⊢ ( 𝑥 = +∞ → ( ( ∀ 𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ∅ 𝑧 < 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ ∅ ¬ 𝑦 < +∞ ∧ ∀ 𝑦 ∈ ℝ* ( +∞ < 𝑦 → ∃ 𝑧 ∈ ∅ 𝑧 < 𝑦 ) ) ) ) |
| 148 |
147
|
rspcev |
⊢ ( ( +∞ ∈ ℝ* ∧ ( ∀ 𝑦 ∈ ∅ ¬ 𝑦 < +∞ ∧ ∀ 𝑦 ∈ ℝ* ( +∞ < 𝑦 → ∃ 𝑧 ∈ ∅ 𝑧 < 𝑦 ) ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ∅ 𝑧 < 𝑦 ) ) ) |
| 149 |
135 140 148
|
mp2an |
⊢ ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ∅ 𝑧 < 𝑦 ) ) |
| 150 |
149
|
a1i |
⊢ ( 𝐴 ⊆ ℝ → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ ∅ 𝑧 < 𝑦 ) ) ) |
| 151 |
6 134 150
|
pm2.61ne |
⊢ ( 𝐴 ⊆ ℝ → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 152 |
151
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐴 ⊆ ℝ ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 153 |
|
ssel |
⊢ ( 𝐴 ⊆ ℝ* → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ* ) ) |
| 154 |
153 71
|
syl6 |
⊢ ( 𝐴 ⊆ ℝ* → ( 𝑦 ∈ 𝐴 → ¬ 𝑦 < -∞ ) ) |
| 155 |
154
|
ralrimiv |
⊢ ( 𝐴 ⊆ ℝ* → ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < -∞ ) |
| 156 |
|
breq1 |
⊢ ( 𝑧 = -∞ → ( 𝑧 < 𝑦 ↔ -∞ < 𝑦 ) ) |
| 157 |
156
|
rspcev |
⊢ ( ( -∞ ∈ 𝐴 ∧ -∞ < 𝑦 ) → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) |
| 158 |
157
|
ex |
⊢ ( -∞ ∈ 𝐴 → ( -∞ < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) |
| 159 |
158
|
ralrimivw |
⊢ ( -∞ ∈ 𝐴 → ∀ 𝑦 ∈ ℝ* ( -∞ < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) |
| 160 |
155 159
|
anim12i |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < -∞ ∧ ∀ 𝑦 ∈ ℝ* ( -∞ < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 161 |
68 160 130
|
sylancr |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴 ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 162 |
152 161
|
jaodan |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ ( 𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴 ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |