Metamath Proof Explorer
Description: 'Less than or equal to' is reflexive for extended reals. (Contributed by NM, 7-Feb-2007)
|
|
Ref |
Expression |
|
Assertion |
xrleid |
⊢ ( 𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ 𝐴 = 𝐴 |
| 2 |
1
|
olci |
⊢ ( 𝐴 < 𝐴 ∨ 𝐴 = 𝐴 ) |
| 3 |
|
xrleloe |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐴 ≤ 𝐴 ↔ ( 𝐴 < 𝐴 ∨ 𝐴 = 𝐴 ) ) ) |
| 4 |
2 3
|
mpbiri |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → 𝐴 ≤ 𝐴 ) |
| 5 |
4
|
anidms |
⊢ ( 𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴 ) |