Description: 'Less than or equal to' is reflexive for extended reals. Deduction form of xrleid . (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | xrleidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
Assertion | xrleidd | ⊢ ( 𝜑 → 𝐴 ≤ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrleidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
2 | xrleid | ⊢ ( 𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴 ) | |
3 | 1 2 | syl | ⊢ ( 𝜑 → 𝐴 ≤ 𝐴 ) |