Metamath Proof Explorer


Theorem xrleidd

Description: 'Less than or equal to' is reflexive for extended reals. Deduction form of xrleid . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis xrleidd.1 ( 𝜑𝐴 ∈ ℝ* )
Assertion xrleidd ( 𝜑𝐴𝐴 )

Proof

Step Hyp Ref Expression
1 xrleidd.1 ( 𝜑𝐴 ∈ ℝ* )
2 xrleid ( 𝐴 ∈ ℝ*𝐴𝐴 )
3 1 2 syl ( 𝜑𝐴𝐴 )