Metamath Proof Explorer


Theorem xrleloe

Description: 'Less than or equal' expressed in terms of 'less than' or 'equals', for extended reals. (Contributed by NM, 19-Jan-2006)

Ref Expression
Assertion xrleloe ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴𝐵 ↔ ( 𝐴 < 𝐵𝐴 = 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 xrlenlt ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴𝐵 ↔ ¬ 𝐵 < 𝐴 ) )
2 xrlttri ( ( 𝐵 ∈ ℝ*𝐴 ∈ ℝ* ) → ( 𝐵 < 𝐴 ↔ ¬ ( 𝐵 = 𝐴𝐴 < 𝐵 ) ) )
3 2 ancoms ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐵 < 𝐴 ↔ ¬ ( 𝐵 = 𝐴𝐴 < 𝐵 ) ) )
4 3 con2bid ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ( 𝐵 = 𝐴𝐴 < 𝐵 ) ↔ ¬ 𝐵 < 𝐴 ) )
5 eqcom ( 𝐵 = 𝐴𝐴 = 𝐵 )
6 5 orbi1i ( ( 𝐵 = 𝐴𝐴 < 𝐵 ) ↔ ( 𝐴 = 𝐵𝐴 < 𝐵 ) )
7 orcom ( ( 𝐴 = 𝐵𝐴 < 𝐵 ) ↔ ( 𝐴 < 𝐵𝐴 = 𝐵 ) )
8 6 7 bitri ( ( 𝐵 = 𝐴𝐴 < 𝐵 ) ↔ ( 𝐴 < 𝐵𝐴 = 𝐵 ) )
9 4 8 bitr3di ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ¬ 𝐵 < 𝐴 ↔ ( 𝐴 < 𝐵𝐴 = 𝐵 ) ) )
10 1 9 bitrd ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴𝐵 ↔ ( 𝐴 < 𝐵𝐴 = 𝐵 ) ) )