Metamath Proof Explorer


Theorem xrleneltd

Description: 'Less than or equal to' and 'not equals' implies 'less than', for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xrleneltd.a ( 𝜑𝐴 ∈ ℝ* )
xrleneltd.b ( 𝜑𝐵 ∈ ℝ* )
xrleneltd.alb ( 𝜑𝐴𝐵 )
xrleneltd.anb ( 𝜑𝐴𝐵 )
Assertion xrleneltd ( 𝜑𝐴 < 𝐵 )

Proof

Step Hyp Ref Expression
1 xrleneltd.a ( 𝜑𝐴 ∈ ℝ* )
2 xrleneltd.b ( 𝜑𝐵 ∈ ℝ* )
3 xrleneltd.alb ( 𝜑𝐴𝐵 )
4 xrleneltd.anb ( 𝜑𝐴𝐵 )
5 4 necomd ( 𝜑𝐵𝐴 )
6 xrleltne ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → ( 𝐴 < 𝐵𝐵𝐴 ) )
7 1 2 3 6 syl3anc ( 𝜑 → ( 𝐴 < 𝐵𝐵𝐴 ) )
8 5 7 mpbird ( 𝜑𝐴 < 𝐵 )