Metamath Proof Explorer
Description: 'Less than or equal to' and 'not equals' implies 'less than', for
extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)
|
|
Ref |
Expression |
|
Hypotheses |
xrleneltd.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
|
|
xrleneltd.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
|
|
xrleneltd.alb |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
|
|
xrleneltd.anb |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
|
Assertion |
xrleneltd |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
xrleneltd.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
2 |
|
xrleneltd.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
3 |
|
xrleneltd.alb |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
4 |
|
xrleneltd.anb |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
5 |
4
|
necomd |
⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |
6 |
|
xrleltne |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴 ) ) |
7 |
1 2 3 6
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴 ) ) |
8 |
5 7
|
mpbird |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |