Metamath Proof Explorer
Description: "Less than or equal to" expressed in terms of "less than", for extended
reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)
|
|
Ref |
Expression |
|
Hypotheses |
xrlenltd.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
|
|
xrlenltd.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
|
Assertion |
xrlenltd |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrlenltd.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 2 |
|
xrlenltd.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 3 |
|
xrlenlt |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |
| 4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |