Metamath Proof Explorer


Theorem xrletr

Description: Transitive law for ordering on extended reals. (Contributed by NM, 9-Feb-2006)

Ref Expression
Assertion xrletr ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 xrleloe ( ( 𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( 𝐵𝐶 ↔ ( 𝐵 < 𝐶𝐵 = 𝐶 ) ) )
2 1 3adant1 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( 𝐵𝐶 ↔ ( 𝐵 < 𝐶𝐵 = 𝐶 ) ) )
3 2 adantr ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) ∧ 𝐴𝐵 ) → ( 𝐵𝐶 ↔ ( 𝐵 < 𝐶𝐵 = 𝐶 ) ) )
4 xrlelttr ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( ( 𝐴𝐵𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) )
5 xrltle ( ( 𝐴 ∈ ℝ*𝐶 ∈ ℝ* ) → ( 𝐴 < 𝐶𝐴𝐶 ) )
6 5 3adant2 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( 𝐴 < 𝐶𝐴𝐶 ) )
7 4 6 syld ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( ( 𝐴𝐵𝐵 < 𝐶 ) → 𝐴𝐶 ) )
8 7 expdimp ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) ∧ 𝐴𝐵 ) → ( 𝐵 < 𝐶𝐴𝐶 ) )
9 breq2 ( 𝐵 = 𝐶 → ( 𝐴𝐵𝐴𝐶 ) )
10 9 biimpcd ( 𝐴𝐵 → ( 𝐵 = 𝐶𝐴𝐶 ) )
11 10 adantl ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) ∧ 𝐴𝐵 ) → ( 𝐵 = 𝐶𝐴𝐶 ) )
12 8 11 jaod ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) ∧ 𝐴𝐵 ) → ( ( 𝐵 < 𝐶𝐵 = 𝐶 ) → 𝐴𝐶 ) )
13 3 12 sylbid ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) ∧ 𝐴𝐵 ) → ( 𝐵𝐶𝐴𝐶 ) )
14 13 expimpd ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 ) )