Metamath Proof Explorer


Theorem xrletri

Description: Trichotomy law for extended reals. (Contributed by NM, 7-Feb-2007)

Ref Expression
Assertion xrletri ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴𝐵𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 xrltnle ( ( 𝐵 ∈ ℝ*𝐴 ∈ ℝ* ) → ( 𝐵 < 𝐴 ↔ ¬ 𝐴𝐵 ) )
2 1 ancoms ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐵 < 𝐴 ↔ ¬ 𝐴𝐵 ) )
3 xrltle ( ( 𝐵 ∈ ℝ*𝐴 ∈ ℝ* ) → ( 𝐵 < 𝐴𝐵𝐴 ) )
4 3 ancoms ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐵 < 𝐴𝐵𝐴 ) )
5 2 4 sylbird ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ¬ 𝐴𝐵𝐵𝐴 ) )
6 5 orrd ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴𝐵𝐵𝐴 ) )