Metamath Proof Explorer


Theorem xrletrid

Description: Trichotomy law for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xrletrid.1 ( 𝜑𝐴 ∈ ℝ* )
xrletrid.2 ( 𝜑𝐵 ∈ ℝ* )
xrletrid.3 ( 𝜑𝐴𝐵 )
xrletrid.4 ( 𝜑𝐵𝐴 )
Assertion xrletrid ( 𝜑𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 xrletrid.1 ( 𝜑𝐴 ∈ ℝ* )
2 xrletrid.2 ( 𝜑𝐵 ∈ ℝ* )
3 xrletrid.3 ( 𝜑𝐴𝐵 )
4 xrletrid.4 ( 𝜑𝐵𝐴 )
5 xrletri3 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) ) )
6 1 2 5 syl2anc ( 𝜑 → ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) ) )
7 3 4 6 mpbir2and ( 𝜑𝐴 = 𝐵 )